首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction. The beginning of the movement sequence from standing to sitting requires the modulation of plantar flexors activity, including the soleus muscle (SOL), to allow the forward translation of the tibia in relation to the foot, preserving its antigravity function.

Purpose. To analyze the SOL activity during the initial phase of standing to sitting in stroke subjects.

Methods. Two groups of ten subjects each participated in this study, one composed of healthy subjects and the other with subjects with a history of stroke. Electromyographic activity (EMGa) of SOL was analyzed in the ipsilateral (IPSI) and contralateral (CONTRA) limb to side lesion in stroke subjects, and in one limb in healthy subjects during the initial phase of standing to sitting. A force plate was used to identify the movement sequence phase.

Results. The mean values of SOL EMGa were higher in healthy subjects than the ones obtained in the IPSI and CONTRA limb in stroke subjects. Significant differences were only observed between the IPSI and healthy limb (p?=?0.035).

Conclusion. When compared to the healthy subjects, stroke subjects showed a decreased SOL EMGa in the IPSI limb, which suggests that therapeutic decisions must consider the need to promote a better postural control also in the IPSI limb.  相似文献   

2.
BackgroundExcess body mass alters gait biomechanics in a distribution-specific manner. The effects of adding mass centrally or peripherally on biomechanics during sitting and rising from a chair are unknown.MethodsMotion analysis and lower extremity EMG were measured for fifteen healthy, normal weight subjects during sit-to-stand (SitTS) and stand-to-sit (StandTS) from a chair under unloaded (UN), centrally loaded (CL), and peripherally loaded (PL) conditions.ResultsCompared to UN, PL significantly increased support width (SitTS and StandTS), increased peak trunk flexion velocity (SitTS), and trended to increase peak trunk flexion angle (SitTS). During StandTS, CL significantly reduced peak trunk flexion compared to UN and PL. EMG activity of the semitendinosus, vastus lateralis and/or medialis was significantly increased in CL compared to UN during SitTS and StandTS.ConclusionsAdding mass centrally or peripherally induces contrasting biomechanical strategies to successfully sit or rise from a chair. CL limits trunk flexion and increases knee extensor muscle activity whereas; PL increases support width and trunk flexion, thus preventing increased EMG activity.  相似文献   

3.
The study assessed the effect of velocity of arm movement on anticipatory postural adjustments (APAs) generation in the contralateral and ipsilateral muscles of individuals with stroke in seating. Ten healthy and eight post-stroke subjects were studied in sitting. The task consisted in reaching an object placed at scapular plane and mid-sternum height at self-selected and fast velocities. Electromyography was recorded from anterior deltoid (AD), upper (UT) and lower trapezius (LT) and latissimus dorsi (LD). While kinematic analysis was used to assess peak velocity and trunk displacement. Differences were found between the timing of APAs on ipsi and contralateral LD and LT in both movement speeds and in ipsilateral UT during movement of the non-affected arm at a self-selected velocity. A delay on the contralateral LD to reach movement with the non-affected arm at fast velocity was also observed. The trunk displacement was greater in post-stroke subjects. Individuals with stroke demonstrated a delay of APAs in the muscles on both sides of the body compared to healthy subjects. The delay was observed during performance of the reaching task with the fast and self-selected velocity.  相似文献   

4.
Abstract

After a stroke in middle cerebral artery territory, there is a high probability of dysfunction of the ventromedial pathways, mainly related with postural control mechanisms such as the anticipatory postural adjustments (APAs). According to neuroanatomical knowledge, these pathways have a predominant ipsilesional disposition, which justifies a bilateral postural control dysfunction, often neglected in rehabilitation. In order to assess this bilateral postural control dysfunction, electromyography activity was assessed in eight post-stroke and 10 healthy individuals in the anterior deltoids, the superior and lower trapezius, and the latissimus dorsi as they reached for a bottle with both upper limbs separately at a self-selected velocity and fast velocity while standing associated with trunk kinematics analysis. Through this analysis it was possible to compare the timing of APAs in scapular muscles between sides in post-stroke and with healthy individuals, and to verify if there is a relation between the timing and the displacement of the trunk in the temporal window of the APAs. Indeed, post-stroke individuals show a delayed activation of APAs on scapular girdle muscles on both ipsilesional and contralesional sides, which were not reflected in the trunk displacement.  相似文献   

5.
Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise.Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output = 200 ± 12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA).No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles.Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.  相似文献   

6.
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50?Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30?min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.  相似文献   

7.
The purpose of this study was to determine if 8 weeks of exercise affects motor control in people with chronic low back pain (CLBP), measured by anticipatory (APAs) and compensatory postural adjustments (CPAs). APAs and CPAs were measured prior to and following 8 weeks in two groups of people with CLBP: an exercise group (n = 12) who attended three exercise sessions per week for 8 weeks; and a non-exercise control group (n = 12) who were advised to continue their usual activities for the duration of the study. APAs and CPAs were recorded during unilateral arm flexion, bilaterally from rectus abdominis (RA), transverse abdominis/internal oblique (TA/IO), and erector spinae (ES) via surface electromyography. Analysis of muscle onsets and APA amplitudes suggests APAs did not change for either group. Ipsi-lateral TA/IO CPAs increased for the exercise group and ipsi-lateral TA/IO CPAs decreased for the control group. Only exercise promoted a pattern of TA/IO activity during CPAs similar to healthy individuals, suggesting improved control of rotational torques. These results show motor control improvement following exercise in people with CLBP, highlighted by improved side specific control of TA/IO.  相似文献   

8.
This study examined the relationship between onset latencies estimates from EMG and center of pressure (COP) in young (five female, five male; mean=24.2+/-2.3 years) and older (six female, four male; 78.4+/-2.3 years) subjects during anterior or posterior platform translations. The latencies to onset of activity were estimated for the tibialis anterior (TA; mean=119.8 ms across both age groups) and COP (mean=139.7 ms across both groups) for anterior translations, and the soleus (SOL; mean=122.4 ms across both groups), gastrocnemius (GAS; mean=126.0 ms for young, and 115.9 ms for old subjects) and COP (mean=160.0 ms across both groups) for posterior translations. Average within-subject correlations (r') among these measures showed a high correlation between TA and COP onset latency (r'=0.667, young; r'=0.482, old), and relatively low correlations between the plantar flexors (SOL and GAS) and COP onset latencies (SOL: r'=0.292 for young, r'=0.249 for old; GAS: r'=0.126 for young, r'=0.143 for old). The SOL and GAS onset latencies correlated well with each other, especially in the older subjects (r'=0.762), suggesting that the contribution of two muscles creates some variability in the relationship with COP onset latency. The strong correlation between TA and COP for anterior perturbations, coupled with the weaker correlations for the plantar flexors suggest that the COP method may be preferable for studies interested in determining timing of postural responses to multidirectional perturbations.  相似文献   

9.
The study investigates the role of lateral muscles and changing stance conditions in anticipatory postural adjustments (APAs). Subjects stood laterally to an aluminum pendulum released by an experimenter and were required to stop it with their right or left hand. Stance conditions were manipulated by having the subjects stand in the following positions: on a single limb (SS), with feet together (narrow base of support, NB), and with feet shoulder width apart (regular base of support, RB). Bilateral EMG activity of dorsal, ventral, and lateral trunk and leg muscles and ground reaction forces were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in all experimental conditions, and their magnitudes depended on the stance and the side of perturbation. Accordingly, APAs in lateral muscles increased on the side of perturbation in SS condition, while simultaneous activation of dorsal muscles occurred on the contralateral side. Smaller APAs were seen in lateral muscles in conditions with a wider base of support (NB, RB) and APAs in dorsal muscles were smaller in NB – in comparison to RB – stance. The results of the present study provide new data on the role of lateral, ventral, and dorsal muscles in anticipatory postural control when dealing with lateral perturbations in conditions of postural instability.  相似文献   

10.
Motor overflow (MO) is an involuntary muscle activation associated with strenuous contralateral movement and may become manifested after stroke. The study was undertaken to investigate physiological correlation underlying atypical directional effect of joint movement on post-stroke MO in the affected upper limb. Thirty patients with unilateral post-stroke hemiparesis and fifteen age-matched healthy controls participated in this study. According to motor function assessed with the Fugl-Meyer arm scale, the patients were categorized into two groups of equal number with better (CVA_G; n = 15) or poorer motor functions (CVA_P; n = 15). Surface electromyography (EMG) was used to record irradiated muscle activation from eight muscles of the affected upper limb when the subjects performed maximal isometric contractions in different directions with the unaffected shoulder, elbow and wrist joints. The results showed that only MO amplitude of the CVA_G and the control groups was more sensitive to variations in direction of joint movement in the unaffected arm than the CVA_P group. The CVA_G group exhibited larger amplitudes of MO than the control analog, whereas this tendency was reversed for the CVA_P group. In terms of EMG polar plots, spatial representations of post-stroke MO were insensitive to direction of contralateral movement. The spatial representations of the CVA_G and CVA_P groups were predominated by potent flexion-abduction synergy, contrary to the typical extension adduction synergy seen in the control analog. In conclusion, post-stroke MO amplitude was subject to contralateral movement direction for healthy controls and stroke patients with better motor recovery. However, alterations in MO spatial pattern due to directional effect were not strictly related to the degree of motor deficits of the stroke victims.  相似文献   

11.
Abstract

A cerebrovascular accident, otherwise known as stroke, has the potential to damage multiple areas within the brain affecting descending motor control via a multitude of pathways resulting in a wide variety of movement problems. The cortico-reticulospinal system, one of the largest motor systems, is frequently affected, compromising its output, resulting in postural control deficits. The identification of clinically relevant instruments and scales to document and evaluate recovery in post-stroke patients is vital. However, the availability of such measures and scales which take into consideration the role of postural control as an integral component of functional movement performance are scarce. This paper will critically discuss the importance of integrating current neuroscience and motor control knowledge in order to better understand and describe the clinical presentation of persons post-stroke such that the effectiveness of stroke rehabilitation can be appropriately measured.  相似文献   

12.

Objective

Successful execution of upright locomotion requires coordinated interaction between controllers for locomotion and posture. Our earlier research supported this model in the non-impaired and found impaired interaction in the post-stroke nervous system during locomotion. In this study, we sought to examine the role of the Ia afferent spinal loop, via the H-reflex response, under postural influence during a locomotor task. We tested the hypothesis that the ability to increase stretch reflex gain in response to postural loads during locomotion would be reduced post-stroke.

Methods

Fifteen individuals with chronic post-stroke hemiparesis and 13 non-impaired controls pedaled on a motorized cycle ergometer with specialized backboard support system under (1) seated supported, and (2) non-seated postural-loaded conditions, generating matched pedal force outputs of two levels. H-reflexes were elicited at 90°crank angle.

Results

We observed increased H-reflex gain with postural influence in non-impaired individuals, but a lack of increase in individuals post-stroke. Furthermore, we observed decreased H-reflex gain at higher postural loads in the stroke-impaired group.

Conclusion

These findings suggest an impaired Ia afferent pathway potentially underlies the defects in the interaction between postural and locomotor control post-stroke and may explain reduced ability of paretic limb support during locomotor weight-bearing in individuals post-stroke.

Significance

These results support the judicious use of bodyweight support training when first helping individuals post-stroke to regain locomotor pattern generation and weight-bearing capability.  相似文献   

13.
Abstract

Background and aims: Role of the neck and jaw sensory motor system in control of body balance has been established. Tongue is an integral part of jaw sensory motor system and helps in execution of purposeful and precise motor tasks like eating, drinking and speaking. The purpose of this study was to evaluate the possible effects of tongue position on the postural control system.

Materials and method: We compared the mean center of gravity (COG) velocity during quiet standing on an unstable surface with eyes closed during two test conditions: (i) with habitual jaw resting position and (ii) with instructed tongue positioned against the upper incisors. One hundred and sixteen normal healthy male subjects (average age 31.56?±?8.51 years and height 170.86?±?7.26?cm) participated in the study. Their COG velocity (deg/s) was measured using the NeuroCom® Balance Master version 8.5.0 (Clackamas, OR, USA).

Results and conclusions: The results show that COG velocity decreased significantly while tongue was positioned against upper incisors in comparison to the habitual jaw resting position. Our findings suggest that the tongue positioning can modulate postural control mechanisms. Tongue positioning against the upper incisors can enhance the postural stability during upright standing on an unstable surface and in the absence of vision in healthy young adults. Our findings can be of value for evaluation and rehabilitation protocols for postural control dysfunction.  相似文献   

14.
The space medicine data on the nature of motor disorders suggest an important role of the support inputs in the control of mammalian tonic and postural systems. Progress in functional magnetic resonance tomography (fMRT) makes it possible to perform in vivo analysis of various brain areas during stimulation of the support afferentation. Under these conditions, specific activation of the brain cortical areas was studied in 19 healthy subjects (with the mean age of 38 ± 15.13 years) and 23 patients (with the mean age of 53 ± 9.07 years) with focal CNS lesions (cortical-subcortical ischemic stroke). During scanning of subjects, the support areas of the soles of the feet were stimulated using a block design to simulate slow walking. In healthy subjects, significant activation was recorded (p < 0.05 at the cluster level) in the primary somatosensory cortex, premotor and dorsolateral prefrontal cortex, and insular lobe. In patients that had had a stroke, activation of the locomotion-controlling supraspinal systems clearly depended on the stage of the disease. In patients with a cortical-subcortical stroke, the pattern of contralateral activation of the sensorimotor locomotion predominated during motility rehabilitation.  相似文献   

15.
Abstract

Purpose/background: Multiscale entropy (MSE) is a nonlinear measure of postural control that quantifies how complex the postural sway is by assigning a complexity index to the center of pressure (COP) oscillations. While complexity has been shown to be task dependent, the relationship between sway complexity and level of task challenge is currently unclear. This study tested whether MSE can detect short-term changes in postural control in response to increased standing balance task difficulty in healthy young adults and compared this response to that of a traditional measure of postural steadiness, root mean square of velocity (VRMS).

Methods: COP data from 20?s of quiet stance were analyzed when 30 healthy young adults stood on the following surfaces: on floor and foam with eyes open and closed and on the compliant side of a Both Sides Up (BOSU) ball with eyes open. Complexity index (CompI) was derived from MSE curves.

Results: Repeated measures analysis of variance across standing conditions showed a statistically significant effect of condition (p?<?0.001) in both the anterior–posterior and medio-lateral directions for both CompI and VRMS. In the medio-lateral direction there was a gradual increase in CompI and VRMS with increased standing challenge. In the anterior–posterior direction, VRMS showed a gradual increase whereas CompI showed significant differences between the BOSU and all other conditions. CompI was moderately and significantly correlated with VRMS.

Conclusions: Both nonlinear and traditional measures of postural control were sensitive to the task and increased with increasing difficulty of standing balance tasks in healthy young adults.  相似文献   

16.
《Autophagy》2013,9(10):1604-1620
Autophagy is an important proteolytic pathway in skeletal muscles. The roles of muscle fiber type composition and oxidative capacity remain unknown in relation to autophagy. The diaphragm (DIA) is a fast-twitch muscle fiber with high oxidative capacity, the tibialis anterior (TA) muscle is a fast-twitch muscle fiber with low oxidative capacity, and the soleus muscle (SOL) is a slow-twitch muscle with high oxidative capacity. We hypothesized that oxidative capacity is a major determinant of autophagy in skeletal muscles. Following acute (24 h) starvation of adult C57/Bl6 mice, each muscle was assessed for autophagy and compared with controls. Autophagy was measured by monitoring autophagic flux following leupeptin (20 mg/kg) or colchicine (0.4 mg/kg/day) injection. Oxidative capacity was measured by monitoring citrate synthase activity. In control mice, autophagic flux values were significantly greater in the TA than in the DIA and SOL. In acutely starved mice, autophagic flux increased, most markedly in the TA, and several key autophagy-related genes were significantly induced. In both control and starved mice, there was a negative linear correlation of autophagic flux with citrate synthase activity. Starvation significantly induced AMPK phosphorylation and inhibited AKT and RPS6KB1 phosphorylation, again most markedly in the TA. Starvation induced Foxo1, Foxo3, and Foxo4 expression and attenuated the phosphorylation of their gene products. We conclude that both basal and starvation-induced autophagic flux are greater in skeletal muscles with low oxidative capacity as compared with those with high oxidative capacity and that this difference is mediated through selective activation of the AMPK pathway and inhibition of the AKT-MTOR pathways.  相似文献   

17.
The purpose of this study was to examine the effects of aging on posture-related changes of the stretch reflex excitability in the ankle extensor, soleus (SOL), and flexor, tibialis anterior (TA) muscles. Fourteen neurologically normal elderly (mean 68 ± 6 years) and 12 young (mean 27 ± 3 years) subjects participated. Under two postural conditions, upright standing (STD) and sitting (SIT), stretch reflex electromyographic (EMG) responses in the SOL/TA muscle were elicited by imposing rapid ankle dorsi-/plantar-flexion. Under the SIT condition, subjects were asked to keep the SOL background EMG level, which is identical to that under the STD condition. In the SOL muscle, both groups showed significant enhancement of the short-latency stretch reflex (SLR) response when the posture changed from SIT to STD. In the TA muscle, the young group showed significant enhancement of the middle- (MLR) and long-latency stretch reflex (LLR) when the posture changed from SIT to STD; no such modulation was observed in the elderly group. Since the TA stretch reflex responses under the STD condition were comparable in the young and elderly groups, the lack of posture-related modulation of the TA muscle in the elderly group might be explained by augmented stretch reflex excitability under the SIT condition. The present results suggest that the (1) SOL SLR responses are modulated both in the young and elderly subjects when the posture is changed from SIT to STD, (2) TA MLR and LLR responses are not modulated in the elderly subjects when the posture is changed from SIT to STD, while each response is same between the young and elderly in STD, and (3) the effect of aging on the posture-related stretch reflex differs in the SOL and TA muscles.  相似文献   

18.
We investigated the effects of stance width on postural movement pattern and activation timing of postural muscles during unilateral arm abduction. Thirty-two healthy subjects abducted the right arm at their own timing. Stance width was 0, 9, 18 or 27 cm. Movement angles of leg lateral inclination and trunk lateral flexion to the leg in the frontal plane were analyzed. Based on movement angles at 0 cm width, subjects were classified into three groups: contralateral whole body leaning (CWBLg); ipsilateral trunk flexion (ITFg); and contralateral trunk flexion (CTFg). A high correlation between the movement angles was obtained at 0 cm width (r = 0.82). With increasing stance width, postural movement pattern in the ITFg shifted to patterns characterized by lateral flexion of the trunk toward the side opposite to arm movement, and movement angle of leg-inclination in ITFg and CWBLg decreased. At 0 cm width, left gluteus medius and tensor fascia latae were activated significantly about 40 ms ahead of the right middle deltoid in CWBLg and CTFg, but not in ITFg. However, preceding activation became prominent (about 20 ms) in ITFg for wide stances. Moreover, bilateral activation of the tensor fascia latae was observed in CTFg for all widths.  相似文献   

19.
Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 s at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were <2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia.  相似文献   

20.
Balancing exercises on instable bases (sensorimotor training [SMT]) are often used in the rehabilitation process of an injured athlete to restore joint function. Recently it was shown that SMT was able to enhance rate of force development (RFD) in a maximal voluntary muscle contraction. The purpose of this study was to compare adaptations on strength capacity following ballistic strength training (BST) with those following an SMT during a training period of 1 microcycle (4 weeks). Maximum voluntary isometric strength (MVC), maximum RFD (RFDmax) and the corresponding neural activation of M. soleus (SOL), M. gastrocnemius (GAS), and M. tibialis anterior (TIB) were measured during plantar flexion in 33 healthy subjects. The subjects were randomly assigned to a SMT, BST, or control group. RFDmax increased significantly stronger following BST (48 +/- 16%; p < 0.01) compared to SMT (14 +/- 5%; p < 0.05), whereas MVC remained unchanged in both groups. Median frequencies of the electromyographic power spectrum during the first 200 ms of contraction for GAS increased following both BST (45 +/- 21%; p < 0.05) and SMT (45 +/- 22%; p < 0.05), but median frequencies for SOL increased only after SMT (13 +/- 4%; p < 0.05). Additionally, mean amplitude voltage increased following BST for SOL (38 +/- 12%; p < 0.01) and for GAS (73 +/- 23%; p < 0.01) during the first 100 ms, whereas it remained unchanged after SMT. It is concluded that BST and SMT may induce different neural adaptations that specifically affect recruitment and discharge rates of motor units at the beginning of voluntary contraction. Specific neural adaptations indicate that SMT might be used complementarily to BST, especially in sports that require contractile explosive properties in situations with high postural demands, e.g., during jumps in ball sports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号