首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although menthol is a common ingredient in pharmaceutical and food products, its sensory properties have not been studied extensively. The objective of this study was to describe and compare the temporal properties of l- and d-menthol. The cooling, burning, and bitterness of two menthol isomers (l-, d-) each at 0.01, 0.02, 0.04, 0.08% (w/v) in aqueous solution were evaluated by 11 trained panelists using time-intensity methodology. The intensity of all three attributes were evaluated continuously from introduction of the sample into the mouth, through expectoration at 10 s, until the termination of the sensation. The l-menthol samples had a greater maximum intensity and longer total duration of cooling and burning sensations than the d-menthol samples. In addition, maximum intensity and total duration of cooling and burn increased with concentration. In contrast, the total duration of the burning sensation was only dependent upon concentration of the l-isomer. Increasing menthol concentration significantly increased maximum intensity and total duration of bitterness for both isomers.  相似文献   

2.
Methyl salicylate as a cutaneous stimulus: a psychophysical analysis   总被引:1,自引:0,他引:1  
Two experiments were performed to examine the perceptual effects of methyl salicylate on hairy skin in humans. In the first experiment, the sensitivity to methyl salicylate (prepared in an ethanol and water vehicle and applied via filter paper) was measured in a paradigm that required subjects to report both the perceived intensity and the perceptual quality of the sensations they experienced. The results indicated that methyl salicylate could be reliably detected at concentrations between 3 and 12%. Peak perceived intensities increased with increasing concentration, and the dominant sensation quality reported was "burning". The second experiment, which measured the effect of methyl salicylate on the perception of temperature change, revealed that the compound enhances the perception of warming but does not affect the perception of cooling. For most subjects, methyl salicylate produced a hyperalgesia to heating. Overall, the data suggest that methyl salicylate probably produces its sensory effects via stimulation and/or sensitization of a population of cutaneous nociceptors.  相似文献   

3.
Green  Barry G. 《Chemical senses》1986,11(3):371-382
The interaction between thermal and chemical stimulation inthe oral cavity was studied in two experiments by measuringthe perceived intensity of thermal sensations in the presenceof capsaicin, and the perceived intensity of the ‘burning’sensations produced by capsaicin at several solution temperatures.It is demonstrated in the first experiment that capsaicin intensifiessensations of warmth (particularly at moderateto-high temperatures)and slightly but consistently reduces the intensity of perceivedcold. On the other hand, the burning sensation induced by capsaicinis enhanced by warming and inhibited by cooling. The secondexperiment confirmed the existence of a second inhibitory factorin addition to cooling, possibly of tactile origin. Viewed togetherthe results of both experiments indicate that complex sensoryinteractions may take place in the trigeminal system duringsimultaneous chemical, thermal and mechanical stimulation.  相似文献   

4.
The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p < 0.05). Ratings of nonpainful nociceptive sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.  相似文献   

5.
The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29°C) or heating (37°C) local regions of the forearm. Stimuli were delivered via a 4?×?4 array of 8 mm?×?8?mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r?=?0.83, p?<?0.05). Ratings of nonpainful nociceptive sensations produced by the two temperatures were also correlated, but to a lesser degree (r?=?0.44), and the associations between nociceptive and thermal sensations (r?=?0.35 and 0.22 for 37 and 29°C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.  相似文献   

6.
The tactile and thermal sensitivity of diverse regions of the human body have been documented extensively, with one exception being the scalp. Additionally, sensory changes may accompany the hair loss from the scalp in androgen-related alopecia (ARA), but formal quantitative sensory testing (QST) has not been reported in respect of this. Therefore, light touch detection thresholds were obtained at nine scalp sites and one forehead site, using Semmes–Weinstein filaments (Von Frey hairs), and for warming and cooling from skin baseline temperature, using 28 and 256?mm2 thermodes. Affective, thermal, and nociceptive sensations experienced at thermal detection threshold were quantified. Thirty-two male participants were recruited, 10 of whom had normal hair coverage, 12 of whom had shaved scalp but with potentially normal hair coverage, and 10 of whom exhibited ARA to some extent. The scalp was relatively insensitive to tactile and thermal stimulation at all tested sites, especially so along the midline and near the apex of the skull. Threshold level warm stimuli were rated less pleasant, the less sensitive the test site. After correction for age-related changes in sensitivity, bald scalp sites were found more sensitive to cooling than the same sites when shaved, consistent with prior informal reports of increased sensitivity for some scalp sensations in ARA. QST on hair-covered sites was subject to methodological issues that render such testing non-ideal, such as bias in measurement of resting skin temperatures, and the near impossibility of delivering filament stimuli to the scalp skin without disturbing neighboring hairs.  相似文献   

7.
The tactile and thermal sensitivity of diverse regions of the human body have been documented extensively, with one exception being the scalp. Additionally, sensory changes may accompany the hair loss from the scalp in androgen-related alopecia (ARA), but formal quantitative sensory testing (QST) has not been reported in respect of this. Therefore, light touch detection thresholds were obtained at nine scalp sites and one forehead site, using Semmes-Weinstein filaments (Von Frey hairs), and for warming and cooling from skin baseline temperature, using 28 and 256 mm(2) thermodes. Affective, thermal, and nociceptive sensations experienced at thermal detection threshold were quantified. Thirty-two male participants were recruited, 10 of whom had normal hair coverage, 12 of whom had shaved scalp but with potentially normal hair coverage, and 10 of whom exhibited ARA to some extent. The scalp was relatively insensitive to tactile and thermal stimulation at all tested sites, especially so along the midline and near the apex of the skull. Threshold level warm stimuli were rated less pleasant, the less sensitive the test site. After correction for age-related changes in sensitivity, bald scalp sites were found more sensitive to cooling than the same sites when shaved, consistent with prior informal reports of increased sensitivity for some scalp sensations in ARA. QST on hair-covered sites was subject to methodological issues that render such testing non-ideal, such as bias in measurement of resting skin temperatures, and the near impossibility of delivering filament stimuli to the scalp skin without disturbing neighboring hairs.  相似文献   

8.
The effect of menthol on the discharge pattern of feline nasal and lingual cold receptors was analyzed in order to elucidate the underlying sensory transducer mechanism. A repetitive beating activity and burst (grouped) discharges were observed in both cold receptor populations at constant temperatures and after rapid cooling. An analysis of the impulse activity revealed a cyclic pattern of impulse generation, which suggested the existence of an underlying receptor potential oscillation that initiates impulses in the afferent nerve when it exceeds a threshold value. The frequency and amplitude of the periodic impulse-inducing receptor processes were characterized by the burst frequency, which increased with warming, and by the average number of impulses generated during each cycle, which increased with cooling. Menthol at micromolar concentrations induced an acceleration of the burst frequency at higher temperatures, but reduced the burst frequency in the midtemperature range. At temperatures above 25 degrees C, menthol increased the number of impulses elicited during each cycle and induced bursting in previously repetitively discharging fibers. At low temperatures, menthol suppressed bursting and finally inhibited all cold receptor activity. The impulse pattern at constant temperatures and during the dynamic response to rapid cooling was comparably affected by menthol. Calcium application completely abolished the stimulating menthol effect. Since, in equal concentrations, menthol specifically impairs neuronal calcium currents, the results are consistent with the conjecture that in cold receptors, menthol reduces the activation of a calcium-stimulated outward current by an impeding effect on a calcium conductance, thereby inducing depolarization and a modification of bursting behavior. The data confirm the hypothesis of a calcium-controlled outward conductance being involved in the generation of cyclic afferent activity in cold receptors.  相似文献   

9.
Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful) temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP) family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.  相似文献   

10.
"Synthetic heat", also known as the heat grill illusion, occurs when contact with spatially adjacent warm and cold stimuli produce a sensation of "heat". This phenomenon has been explained as a painful perception that occurs when warm stimulation inhibits cold-sensitive neurons in the spinothalamic tract (STT), which in turn unmasks activity in the pain pathway caused by stimulation of C-polymodal nociceptors (CPNs). The "unmasking model" was tested in experiment 1 by combining warm (35-40 degrees C) and cool (> or = 27 degrees C) stimuli that were too mild to stimulate CPNs. After discovering that these temperatures produced nonpainful heat, experiment 2 was designed to determine whether heat could be induced when near-threshold cooling was paired with mild warmth, and whether lowering the base temperature for cooling would increase the noxious (burning, stinging) components of heat for fixed cooling steps of 1-3 degrees C. Cooling by just 1 degrees C from a base temperature of 33 degrees C led to reports of heat on more than 1/3 of trials, and cooling by just 3 degrees C evoked heat on 75% of trials. Lowering the base temperature to 31 or 29 degrees C increased reports of heat and burning but did not produce significant reports of pain. Perception of nonpainful heat at such mild temperatures indicates either that cold-sensitive nociceptors with thresholds very similar to cold fibers innervate hairy skin in humans, or that heat can result from integration of warm fiber and cold fiber activity, perhaps via convergence on nonspecific (e.g., WDR) neurons in the STT.  相似文献   

11.
12.
"Synthetic heat", also known as the heat grill illusion, occurs when contact with spatially adjacent warm and cold stimuli produce a sensation of "heat". This phenomenon has been explained as a painful perception that occurs when warm stimulation inhibits cold-sensitive neurons in the spinothalamic tract (STT), which in turn unmasks activity in the pain pathway caused by stimulation of C-polymodal nociceptors (CPNs). The "unmasking model" was tested in experiment 1 by combining warm (35-40°C) and cool ( &#83 27°C) stimuli that were too mild to stimulate CPNs. After discovering that these temperatures produced nonpainful heat, experiment 2 was designed to determine whether heat could be induced when near-threshold cooling was paired with mild warmth, and whether lowering the base temperature for cooling would increase the noxious (burning, stinging) components of heat for fixed cooling steps of 1-3°C. Cooling by just 1°C from a base temperature of 33°C led to reports of heat on more than 1/3 of trials, and cooling by just 3°C evoked heat on 75% of trials. Lowering the base temperature to 31 or 29°C increased reports of heat and burning but did not produce significant reports of pain. Perception of nonpainful heat at such mild temperatures indicates either that cold-sensitive nociceptors with thresholds very similar to cold fibers innervate hairy skin in humans, or that heat can result from integration of warm fiber and cold fiber activity, perhaps via convergence on nonspecific (e.g., WDR) neurons in the STT.  相似文献   

13.
Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.  相似文献   

14.
When ambient temperature is decreased in mammals, autonomic and behavioral heat-gain responses occur to maintain their core temperatures. However, what molecules in cutaneous sensory nerve endings mediate cooling-induced responses is unclear. Recently, transient receptor potential melastatin-8 (TRPM8) has been identified in cell bodies of sensory neurons as low-temperature and menthol-activated cation channel. We hypothesized that TRPM8 mediates cooling-induced autonomic and behavioral heat-gain responses. To activate TRPM8 specifically, we applied 1-10% menthol to the skin of whole trunk in mice instead of cooling and measured core temperatures and autonomic and behavioral heat-gain responses. Solvent of menthol (100% ethanol) was used as control. Significant elevation of core temperatures was observed between 20 and 120 min after menthol application. Pretreatment with diclofenac sodium, an antipyretic drug, did not affect this hyperthermia, indicating that the menthol-induced hyperthermia is not fever. Menthol application induced a rise in oxygen consumption, shivering-like muscle activity, tail skin vasoconstriction (autonomic responses), and heat-seeking behavior. All of them are typical heat-gain responses. These results support the hypothesis that TRPM8 mediates cooling-induced autonomic and behavioral heat-gain responses.  相似文献   

15.
Abstract

Purpose: This study investigated the effects of thermal stimulation on corticomotor excitability with transcranial magnetic stimulation (TMS).

Material and methods: Participants consisted of healthy young adults (n?=?20) and seniors (n?=?15). Each experimental session consisted of a baseline (BL) assessment, followed by a warming and a cooling protocol. At BL, recordings of motor evoked potentials (MEPs) and skin temperature were performed with the index finger covered with a ‘neutral’ gel pack (24?°C). For warming, the same measurements were performed, but with the index covered with a warmed gel pack (45?°C). The gel pack was kept for 5?min, and the measurements were performed at 1?min during warming and 5 and 10?min post. After a break, participants were tested with the cooling protocol (gel pack 10?°C) by repeating the same sequence as in the warming.

Results: The two thermal protocols induced the desired range of skin temperatures (warming?=?35–45°; cooling?=?13–24°). For MEP modulation, the primary analysis revealed no main effects or interactions, owing to the variability of responses to either warming or cooling stimulation. Further analysis of individual responses revealed that modulation, when present, was short-lasting and was characterized by a depression in about half of the participants. Facilitation was also observed, but only in smaller clusters, especially with cooling (13/35). Modulation in MEP amplitude did not correlate with changes in skin temperature.

Conclusion: These results are consistent with previous reports regarding variability in response to sensory stimulation protocols. In the case of thermal stimulation, such variability likely reflects individual differences in the influences exerted by thermal afferents centrally.  相似文献   

16.
Willis DN  Liu B  Ha MA  Jordt SE  Morris JB 《FASEB journal》2011,25(12):4434-4444
Menthol, the cooling agent in peppermint, is added to almost all commercially available cigarettes. Menthol stimulates olfactory sensations, and interacts with transient receptor potential melastatin 8 (TRPM8) ion channels in cold-sensitive sensory neurons, and transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing channel. It is highly controversial whether menthol in cigarette smoke exerts pharmacological actions affecting smoking behavior. Using plethysmography, we investigated the effects of menthol on the respiratory sensory irritation response in mice elicited by smoke irritants (acrolein, acetic acid, and cyclohexanone). Menthol, at a concentration (16 ppm) lower than in smoke of mentholated cigarettes, immediately abolished the irritation response to acrolein, an agonist of TRPA1, as did eucalyptol (460 ppm), another TRPM8 agonist. Menthol's effects were reversed by a TRPM8 antagonist, AMTB. Menthol's effects were not specific to acrolein, as menthol also attenuated irritation responses to acetic acid, and cyclohexanone, an agonist of the capsaicin receptor, TRPV1. Menthol was efficiently absorbed in the respiratory tract, reaching local concentrations sufficient for activation of sensory TRP channels. These experiments demonstrate that menthol and eucalyptol, through activation of TRPM8, act as potent counterirritants against a broad spectrum of smoke constituents. Through suppression of respiratory irritation, menthol may facilitate smoke inhalation and promote nicotine addiction and smoking-related morbidities.  相似文献   

17.
Green  Barry G. 《Chemical senses》1991,16(6):675-689
Psychophysical measurements were made of the perceived intensityand quality of sensations of chemical irritation before andafter the tip of the tongue had been desensitized to capsaicin(10 ppm). The results of the first experiment showed that capsaicindesensitization tended to reduce the perceived intensity ofirritation produced by approximately equipotent concentrationsof capsaicin (3 ppm), ethanol (30%), cinnamic aldehyde (2.5%)and NaCl (5M) applied to the tongue on filter paper disks; however,the reduction in irritation was less for the latter three compoundsthan for capsaicin and failed to reach statistical significancefor ethanol. Ratings of sensation quality suggested that thefour irritants produced different quality ‘profiles’,and that ethanol and cinnamic aldehyde were characterized bysensations of numbness as well as by sensations of burning andstinging/pricking. Follow-up experiments in which subjects ratedthe perceived intensity of individual sensation qualities showedthat desensitization dramatically reduced the burning and stinging/prickingcomponents of irritation, but left the sensations of numbnessand chemogenic warmth unchanged. It is concluded that lingualchemesthetic sensations are multidimensional, and mediated byboth capsaicinsensitive and capsaicin-insensitive sensory pathways.  相似文献   

18.
Zhang XB  Jiang P  Gong N  Hu XL  Fei D  Xiong ZQ  Xu L  Xu TL 《PloS one》2008,3(10):e3386
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABA(A) receptor (GABA(A)R) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABA(A)R. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABA(A)Rs in regulating neuronal activity.  相似文献   

19.
An experiment was conducted to investigate the sensitivity ofthe skin to capsaicin. Whereas most previous work on capsaicin'scutaneous (extra-oral) effects have focused on its ability tosensitize or desensitize the skin to subsequent stimulation,the present study measured the absolute sensitivity to, andthe sensations produced by, transient exposures to capsaicin.A wide range of concentrations of capsaicin was presented tothe volar forearm under conditions that prevented significantevaporation for the first 10 min of exposure, and subjects reportedthe sensations they experienced over a 20-min period. The resultsshowed that capsaicin produced a variety of sensations (includingitch, stinging/pricking and burning) that varied in time andfrequency of appearance. Missing from the subjective reportswas a significant thermal component to the sensation; capsaicinapparently failed to stimulate warm fibers either strongly orreliably. Overall, however, the variety of sensations inducedby capsaicin reflects the multi-modal nature of the chemicalsensitivity of the skin.  相似文献   

20.
It was recently found that transient receptor potential (TRP) channels play an important role in the transduction of thermal, mechanical, and chemical stimuli underlying the somatic sensation. Several types of TRP channels exhibit sensitivity to increases or decreases in temperature, as well as to the action of chemical ligands that elicit similar thermal or painful sensations. These agents include menthol, mustard oil, cinnamaldehyde (CA), gingerol, capsaicin, camphor, eugenol, and others. Cinnamaldehyde is a pungent chemical obtained from cinnamon, which acts as an agonist of the TRPA1 channels; these channels were originally reported to be activated by cold temperatures (below 18°C). TRPA1 is also implicated in cold nociception. However, its role in the formation of cold pain is more controversial, with discrepant reports that TRPA1s do or do not respond to intense cooling. Menthol derived from plants of the mint family enhances the feeling of coldness by interacting with the cold-sensitive TRPM8 channels, but its effect on pain is less well understood. Using behavioral methods, we showed that unilateral intraplantar injection of CA (5 to 20%) induced a significant concentration-dependent decrease in the latency for ipsilateral paw withdrawal from a noxious heat stimulus, i.e., heat hyperalgesia. Cinnamaldehyde also significantly reduced mechanical withdrawal thresholds for the injected paw, i.e., evoked mechanical allodynia. Bilateral intraplantar injections of CA resulted in a significant cold hyperalgesia (cold plate test) and a weak enhancement of innocuous cold avoidance (thermal preference test). In contrast to CA, menthol in a dose-dependent manner increased the latency for noxious heat-evoked withdrawal, i.e., exerted an antinociceptive effect. Menthol did not affect mechanosensation except for a weak allodynic effect when applied in the highest concentration used (40 %), indicating that it did not exert a local anesthetic effect. Menthol had a biphasic effect on cold avoidance. High concentrations of menthol reduced cold avoidance, i.e., induced cold hypoalgesia, while low menthol concentrations significantly intensified cold avoidance. The highest menthol concentration provided cold hypoalgesia (cold plate test), while lower concentrations had no effect. Taken together, our data support the idea that TRPA1 and TRPM8 channels represent promising peripheral targets for pain modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号