首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
1H nuclear magnetic resonance (NMR) spectra at 500 MHz have been obtained for taurocholate/egg phosphatidylcholine mixtures of varying composition. The excellent chemical shift dispersion permits identification of most resonances for each component. This high-resolution character of the NMR spectra is retained until the phosphatidylcholine (PC) mole fraction exceeds 60–70% (the exact limit depends on ionic strength). 1H linewidths have been monitored as a function of solute composition in order to evaluate trends in local molecular mobility of each component as the distribution of aggregate particles is varied, and to examine the effects of added NaCl in altering micellar size and shape. Although prior light scattering studies (Mazer, N.A., Benedek, G.B. and Carey, M.C. (1980) Biochemistry 19, 601–615) and our own work indicate a 6-fold increase in particle hydrodynamic radius from pure taurocholate micelles to 1 : 1 taurocholate/PC mixtures containing 150 mM NaCl, both lipid components retain substantial motional freedom and exhibit narrow NMR signals in this compositional region. As the solubilization limit for PC is approached (approx. 2:1 PC:taurocholate), differential behavior is observed for the two components: the motion of taurocholate becomes preferentially restricted, while polar portions of the PC remain mobile until large multilayers predominate.  相似文献   

2.
Cytochrome P-450 LM2 was reconstituted by the cholate-dialysis method into vesicles containing a mixture of either phosphatidylcholine or phosphatidylethanolamine with up to 50 mol% of phosphatidic acid. Phase transition curves in the presence or absence of cytochrome P-450 were obtained from electron paramagnetic resonance experiments by measuring the partitioning of 2,2,6,6-tetramethylpiperidine-1-oxyl. Protein-free phospholipid vesicles exhibit a phase separation into domains of gel phase enriched in phosphatidic acid in a surrounding fluid matrix containing mainly phosphatidylcholine. The phase transition of the phosphatidic acid domains disappeared following incorporation of cytochrome P-450 into the bilayers. In contrast, in vesicles containing mixtures of egg-phosphatidic acid and dimyristoyl phosphatidylcholine, the phase transition of the domains enriched in dimyristoyl phosphatidylcholine was less sharp than in the corresponding vesicles containing cytochrome P-450. The results of both of these experiments could be explained by a redistribution of the mol fraction of the two phospholipids in the gel phase due to preferential binding of the egg-phosphatidic acid to the cytochrome P-450. For comparison, incorporation of cytochrome P-450 into uncharged vesicles of dimyristoyl phosphatidylcholine and egg-phosphatidylethanolamine did not alter the  相似文献   

3.
 PsaC is a tightly bound ferredoxin in the Photosystem I (PS I) reaction center which contains two [4Fe-4S] clusters named FA and FB. We recently proposed that the mixed-ligand FB cluster in C14DPsaC and the mixed-ligand FA cluster in C51DPsaC exist in a spin state of S=3/2, and that a spin state crossover to S=1/2 occurs when the PsaC mutants are rebound onto P700-FX cores. Since EPR signals from a highly rhombic S=3/2 spin state can be difficult to study, wild-type PsaC was reconstituted with iron and selenium to introduce an easily detected S=7/2 spin state similar to that shown for Clostridial ferredoxin. When the unbound [4Fe-4Se] PsaC was chemically reduced, a sharp derivative resonance was found at g=5.171 attributed to the excited ±3/2 doublet from an S=7/2 spin multiplet. An additional peak was found at g=5.616 attributed to the superimposed ±1/2 and ±3/2 doublets from a highly rhombic S=3/2 spin multiplet, and an axial set of resonances found around g=2.0 attributed, in part, to a classical S=1/2 spin state. When the [4Fe-4Se] PsaC was rebound onto P700-FX cores, the spin population derived from the S=7/2 and 3/2 spin states was negligible. Illumination of the rebuilt PS I complex at 15 K resulted in two rhombic sets of resonances, one with g values of 2.043, 1.941 and 1.854, diagnostic of FA, and the other with g values of 2.067, 1.941 and 1.878, diagnostic of FB. Chemical reduction with sodium dithionite at pH 10.5 or photoaccumulation by freezing during illumination resulted in a set of resonances with g values of 2.046, 1.938, 1.920 and 1.883, characteristic of a spin-coupled FA /FB pair. The spin state crossover in this iron chalcogenide cluster is the first known to be induced by protein-protein association and reinforces the hypothesis that an S=3/2 to 1/2 crossover occurs in the PS I-rebound mutants C14DPsaC and C51DPsaC. Received: 6 August 1996 / Accepted: 28 December 1996  相似文献   

4.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

5.
The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG2000) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG2000. At this proportion of DSPE-PEG2000, the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG2000 in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.  相似文献   

6.
Human Meibomian gland secretions (MGS) are a complex mixture of diverse lipids that are produced by Meibomian glands that are located in the upper and the lower eyelids. During blinking, MGS are excreted onto the ocular surface, spread and mix with aqueous tears that are produced by lachrymal glands, and form an outermost part of an ocular structure called “the tear film” (TF). The main physiological role of TF is to protect delicate ocular structures (such as cornea and conjunctiva) from desiccating. Lipids that are produced by Meibomian glands are believed to “seal” the aqueous portion of TF by creating a hydrophobic barrier and, thus, retard evaporation of water from the ocular surface, which enhances the protective properties of TF. As lipids of MGS are interacting with underlying aqueous sublayer of TF, the chemical composition of MGS is critical for maintaining the overall stability of TF. There is a consensus that a small, but important part of Meibomian lipids, namely polar, or amphiphilic lipids, is of especial importance as it forms an intermediate layer between the aqueous layer of TF and its upper (and much thicker) lipid layer formed mostly of very nonpolar lipids, such as wax esters and cholesteryl esters. The purpose of this review is to summarize the current knowledge on the lipidomics of human MGS, including the discussions of the most effective modern analytical techniques, chemical composition of MGS, biophysical properties of Meibomian lipid films, and their relevance for the physiology of TF. Previously published results obtained in numerous laboratories, as well as novel data generated in the author’s laboratory, are discussed. It is concluded that despite a substantial progress in the area of Meibomian glands lipidomics, there are large areas of uncertainty that need to be addressed in future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号