首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究了纳米银胶/壳聚糖抗菌剂的制备及其形貌的表征分析,以大肠杆菌为代表菌株,研究了复合抗菌剂在洗涤产品中的抗菌效率及抗菌的稳定性,结果说明复合抗菌剂在洗涤产品中添加1.0%时,其抗菌效率达99%,经180 d长期分析,其抗菌活性仍保持95%左右。此外,复合抗菌剂对不同菌株的抗菌性能也均较强。  相似文献   

2.
3.
Silver nanoparticles can be coated on common polyurethane (PU) foams by overnight exposure of the foams to nanoparticle solutions. Repeated washing and air-drying yields uniformly coated PU foam, which can be used as a drinking water filter where bacterial contamination of the surface water is a health risk. Nanoparticles are stable on the foam and are not washed away by water. Morphology of the foam was retained after coating. The nanoparticle binding is due to its interaction with the nitrogen atom of the PU. Online tests were conducted with a prototypical water filter. At a flow rate of 0.5 L/min, in which contact time was of the order of a second, the output count of Escherichia coli was nil when the input water had a bacterial load of 10(5) colony-forming units (CFU) per mL. Combined with the low cost and effectiveness in its applications, the technology may have large implications to developing countries.  相似文献   

4.
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape 1-5. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications 6. Gold is particularly used because of its low toxicity 7-9. A property of metal nano-colloids is that they can have a strong surface plasmon resonance 10. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal 11, 12.We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles 13-15 or nanostars 16. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids 17-22. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.  相似文献   

5.
The urge to repair and regenerate natural tissues can now be satisfactorily fulfilled by various tissue engineering approaches. Chitin and chitosan are the most widely accepted biodegradable and biocompatible materials subsequent to cellulose. The incorporation of nano ZrO2 onto the chitin-chitosan scaffold is thought to enhance osteogenesis. Hence a nanocomposite scaffold was fabricated by lyophilization technique using chitin-chitosan with nano ZrO2. The prepared nanocomposite scaffolds were characterized using SEM, FTIR, XRD and TGA. In addition, the swelling, degradation, biomineralization, cell viability and cell attachment of the composite scaffolds were also evaluated. The results demonstrated better swelling and controlled degradation in comparison to the control scaffold. Cell viability studies proved the non toxic nature of the nanocomposite scaffolds. Cells were found to be attached to the pore walls and spread uniformly throughout the scaffolds. All these results suggested that the developed nanocomposite scaffolds possess the prerequisites for tissue engineering scaffolds and could be used for various tissue engineering applications.  相似文献   

6.
7.
Periodontal regeneration is of utmost importance in the field of dentistry which essentially reconstitutes and replaces the lost tooth supporting structures. For this purpose, nano bioactive glass ceramic particle (nBGC) incorporated alginate composite scaffold was fabricated and characterized using SEM, EDAX, AFM, FTIR, XRD and other methods. The swelling ability, in vitro degradation, biomineralization and cytocompatibility of the scaffold were also evaluated. The results indicated reduced swelling and degradation and enhanced biomineralization and protein adsorption. In addition, the human periodontal ligament fibroblast (hPDLF) and osteosarcoma (MG-63) cells were viable, adhered and proliferated well on the alginate/bioglass composite scaffolds in comparison to the control alginate scaffolds. The presence of nBGC enhanced the alkaline phosphatase (ALP) activity of the hPDLF cells cultured on the composite scaffolds. Thus results suggest that these biocompatible composite scaffolds can be useful for periodontal tissue regeneration.  相似文献   

8.
Ag nanoparticles (NPs) were loaded onto the surface of phenol formaldehyde resin (PFR) NPs without any reducing agent. The as‐synthesized PFR@Ag composites have low cytotoxicity, which makes them promising antibacterial agents. Furthermore, the good fluorescence of PFR could be used for cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
本研究以羧甲基-β-环糊精(CM-β-CD)为模板合成 AgNCs,探讨了 AgNCs 的合成条件,对其进行了表征,并对其抗菌能力进行了研究。结果显示,当溶液的 pH 值为5.98,CM-β-CD 和 AgNO3的比例为1∶1时,合成的银纳米簇荧光强度达到最大。以大肠杆菌为研究对象,对环糊精合成的银纳米簇进行抗菌实验测试,发现由于银纳米簇比表面较大,表面活化能高使其比银离子和银溶胶具有更好的抑菌能力。  相似文献   

10.
以硝酸银作为银源,水溶性淀粉作保护剂,丙酮酸钠作还原剂,氨水提供碱性环境来制备纳米银胶,并以聚乙烯吡咯烷酮(PVP)作分散稳定剂,复配红景天提取液和无患子提取液制备出纳米银/植物源复合抗菌剂。实验结果表明,纳米银胶或植物提取液仅对部分细菌或霉菌有较强抑制效果,而复合抗菌剂对细菌、霉菌均有很强抑制效果。在湿巾液中添加0.5%复合抗菌剂时,其对大肠杆菌,金黄色葡萄球菌和白色念珠菌的抗菌效率可达99%,且经过常温六个月、高温55℃一个月保存后,其抗菌活性分别可达到95%、90%左右,表明复合抗菌剂具有较强的抗菌效率及抗菌稳定性。  相似文献   

11.
12.
AIMS: The objective was to demonstrate the size of silver particles produced by the filamentous fungus Phoma sp.3.2883 via adsorption and accumulation, and to confirm that this silver was in a reduced state. METHODS AND RESULTS: Mycelium was freeze-dried and then shake-cultured in a silver nitrate solution. It was found that up to 13.4 mg of silver was produced per gram of dry mycelium via atomic absorption spectrometer (AAS) analysis. The silver particles adsorbed on the mycelium were observed and measured under transmission electron microscope and their estimated size was 71.06 +/- 3.46 nm. Further examination of the particles via X-ray photoelectron spectroscope confirmed that the adsorbed silver particle had been reduced. CONCLUSION: The frozen mycelium of Phoma sp3.2883 has the potential for use in silver nanoparticle production. SIGNIFICANCE AND IMPACT OF THE STUDY: Silver nanoparticles could be used in the oil industry as an important catalyst and in the field of human medicine as a bactericide. The fungus Phoma sp3.2883 is a potential biosorbent that could be used for the production of these silver nanoparticles, and may also be useful in waste detoxification and in silver recovery programmes.  相似文献   

13.
RNAi在害虫防治中应用的重要进展及存在问题   总被引:2,自引:0,他引:2  
RNAi是目前最有可能应用于害虫绿色防控的新技术。2017年6月,美国环境署(EPA)批准了国际上第一例表达昆虫双链RNA(dsRNA)的抗虫转基因玉米MON87411,掀起了利用RNAi技术进行害虫防治研究新的热潮。但是,目前RNAi在害虫防治中的应用还存在一些问题,例如有效靶标基因筛选和应用策略,鳞翅目昆虫对RNAi的敏感性以及双链RNA在环境中的稳定性等等。本文系统总结了RNA干扰现象发现20年来,该技术在害虫防治领域的研究及应用概况,并对RNAi技术应用的可行性、应用方法、存在问题和目前的一些解决办法进行了比较详细的综述。通过对近期研究结果的综合分析发现,dsRNA进入某些鳞翅目昆虫中肠或血淋巴后,被相关核酸酶降解可能是其RNAi效率较低的首要原因。通过对dsRNA进行脂质体修饰,纳米粒子包埋可以在一定程度上解决dsRNA降解的问题,进而提高RNAi效率。  相似文献   

14.
In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (?200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.  相似文献   

15.
Technologies for fabricating functional tissue architectures by patterning cells precisely are highly desirable for tissue engineering. Although several cell patterning methods such as microcontact printing and lithography have been developed, these methods require specialized surfaces to be used as substrates, the fabrication of which is time consuming. In the present study, we demonstrated a simple and rapid cell patterning technique, using magnetite nanoparticles and magnetic force, which enables us to allocate cells on arbitrary surfaces. Magnetite cationic liposomes (MCLs) developed in our previous study were used to magnetically label the target cells. When steel plates placed on a magnet were positioned under a cell culture surface, the magnetically labeled cells lined on the surface where the steel plate was positioned. Patterned lines of single cells were achieved by adjusting the number of cells seeded, and complex cell patterns (curved, parallel, or crossing patterns) were successfully fabricated. Since cell patterning using magnetic force may not limit the property of culture surfaces, human umbilical vein endothelial cells (HUVECs) were patterned on Matrigel, thereby forming patterned capillaries. These results suggest that the novel cell patterning methodology, which uses MCLs, is a promising approach for tissue engineering and studying cell-cell interactions in vitro.  相似文献   

16.
The goal of endodontic treatment is the debridement and removal of the microbial ecosystem associated with the disease process. The need for root canal disinfectants increases especially in those cases where infection is resistant to the regular treatment and the outcome of endodontic therapy is often compromised. Therefore, it is of interest to document the known effectiveness of silver nanoparticle based root canal disinfectants with other root canal disinfectants on microbial load reduction during root canal disinfection. Known data shows that the overall risk of bias for the selected studies was moderate. Silver nanoparticle based root canal disinfectants showed superior reduction of microbial counts in majority of the studies. This data is limited to vitro studies with no clinical information to validate the use of antimicrobial properties of silver nanoparticles used as root canal disinfectant.  相似文献   

17.
Biofouling is a major challenge in the water industry and public health. Silver nanoparticles (AgNPs) have excellent antimicrobial properties and are considered to be a promising anti-biofouling agent. A modified method was used to produce small sized and well-dispersed biogenic silver nanoparticles with a mean size of ~6?nm (Bio-Ag0-6) using Lactobacillus fermentum. The morphology, size distribution, zeta potential and oxidation state of the silver were systematically characterized. Determination of minimal inhibitory and bactericidal concentration results revealed that biogenic silver Bio-Ag0-6 can effectively suppress the growth of the test bacteria. Additionally, the inhibition effects of Bio-Ag0-6 on biofilm formation and on established biofilms were evaluated using P. aeruginosa (ATCC 27853) as the model bacterium. The results from microtiter plates and confocal laser scanning microscopy demonstrated that Bio-Ag0-6 not only exhibited excellent antibacterial performance but also could control biofilm formation and induce detachment of the bulk of P. aeruginosa biofilms leaving a small residual matrix.  相似文献   

18.
Abstract

Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies include utilization of heat, light and ultrasound sensitive systems and in particular pH sensitive systems where the lower pH in endosomes induces drug release. Highly interesting are enzyme sensitive systems where over-expressed disease-associated enzymes are utilized to trigger drug release. The enzyme-based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome field, but the concepts and conclusions are equally important for polymer-based systems.  相似文献   

19.
何雨婧  杜华茂 《微生物学报》2024,64(7):2277-2294
【目的】纳米银(silver nanoparticles, AgNPs)的生物安全性一直受业界诟病,扩大纳米银的治疗窗将为治疗人和动物多耐药性细菌感染提供有效的备选药物。本研究拟用三羧酸循环的重要成员α-酮戊二酸(alpha-ketoglutaric acid, AKG)对纳米银进行表面修饰以提高其抗菌的生物安全性。【方法】芦丁在常温下合成纳米银,用全波长分光光度计、粒度仪及透射电镜进行表征。加1 mmol/L聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)作为稳定剂(PVP-AgNPs),另加10 mmol/L AKG作为封端剂(PVP-AgNPs@AKG),比较2种纳米银的抗菌性及对人正常宫颈上皮细胞(human cervical epithelial cells, HCerEpic)的毒性作用,再分析2种纳米银对大肠杆菌(Escherichia coli) BW25113能量代谢、抗氧化应激和无氧呼吸相关基因表达等的影响。【结果】PVP-AgNPs@AKG对多株革兰阳性细菌和革兰阴性细菌的最小抑菌浓度(minimal inhibit concentration, MIC)和最低杀菌浓度(minimum bactericidal concentration, MBC)均比PVP-AgNPs低50%或50%以上,而对HCerEpic细胞的毒性无显著差异。与PVP-AgNPs相比,PVP-AgNPs@AKG在MIC浓度下对E. coli α-酮戊二酸脱氢酶活性的抑制作用增强,AKG蓄积,ATP水平显著降低,同时活性氧(reactive oxygen species, ROS)的水平显著升高,soxS表达上调,但是,厌氧呼吸相关的arcA、fnrfdnH基因表达上调的程度显著降低。【结论】AKG修饰纳米银能通过靶向α-酮戊二酸脱氢酶抑制细菌的能量代谢,使其对氧化损伤更敏感,从而获得更强的抗菌能力,是一种扩大纳米银治疗窗的有效手段。  相似文献   

20.
Clay nanopaper are nanocomposites with nacre-like structure and multifunctional characteristics including high modulus, significant strength and toughness as well as fire retardancy and low oxygen transmission rate (OTR). Montmorrilonite (MTM) and nanofibrillated cellulose (NFC) hydrocolloids are combined with a chitosan (CS) solution to form high MTM content nanopaper structures by the use of a previously developed papermaking approach. Chitosan functions as flocculation agent and decreases dewatering time to less than 10% compared with MTM-NFC clay nanopaper. The effect of chitosan on the clay nanopaper structure was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Properties were measured by uniaxial tensile testing, thermogravimetric analysis (TGA), OTR and moisture adsorption experiments. A nacre-like multilayered structure was confirmed and the chitosan-clay nanopaper showed favorable mechanical properties at clay contents as high as 44-48 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号