首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antioxidant protection of human serum albumin by chitosan   总被引:1,自引:0,他引:1  
Inhibition of protein oxidation by reactive oxygen species (ROS) would confer benefit to living organisms exposed to oxidative stress, because oxidized proteins are associated with many diseases and can propagate ROS-induced damage. We measured the ability of 2800Da chitosan, D-glucosamine and N-acetyl glucosamine to protect human serum albumin from oxidation by peroxyl radicals derived from 2,2'-azobis(2-amidinopropane)dihydrochloride and N-centered radicals from 1,1'-diphenyl-2-picrylhydrazyl and from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Comparison with the antioxidant action of vitamin C showed that, on a molar basis, chitosan was equally effective in preventing formation of carbonyl and hydroperoxide groups in human serum albumin exposed to peroxyl radicals. It was also a potent inhibitor of conformational changes in the protein, assessed by absorption spectrum and intrinsic fluorescence. D-glucosamine was much less effective and N-acetyl glucosamine was not a useful antioxidant. Protection of the albumin from peroxyl radicals was achieved by scavenging of peroxyl radical. Chitosan was also a good scavenger of N-centered radicals, with glucosamine and N-acetyl glucosamine much less effective. The results suggest that administration of low molecular weight chitosans may inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.  相似文献   

2.
Antioxidant properties of chitosan from crab shells   总被引:2,自引:2,他引:0  
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and its antioxidant properties studied. Chitosan exhibited showed antioxidant activities of 58.3–70.2% at 1 mg/mL and showed reducing powers of 0.32–0.44 at 10 mg/mL. At 10 mg/mL, the scavenging ability of chitosan C60 on 1,1-diphenyl-2-picrylhydrazyl radicals was 28.4% whereas those of other chitosans were 46.4–52.3%. At 0.1 mg/mL, scavenging abilities on hydroxyl radicals were 62.3–77.6% whereas at 1 mg/mL, chelating abilities on ferrous ions were 82.9–96.5%. All EC50 values of antioxidant activity were below 1.5 mg/mL. With regard to antioxidant properties assayed, the effectiveness of chitosans C60, C90 and C120 correlated with their N-deacetylation times. Overall, crab chitosan was good in antioxidant activity, scavenging ability on hydroxyl radicals and chelating abilities on ferrous ions and may be used as a source of antioxidants, as a possible food supplement or ingredient in the pharmaceutical industry.  相似文献   

3.
The lipophilic radical initiator (MeO-AMVN) and the fluorescent probe C11BODIPY581/591 (BODIPY) were used to measure the lipid compartment oxidizability of human plasma. Aqueous plasma oxidizability was initiated by the aqueous peroxyl radical generator, AAPH, and 2',7'-dichlorodihydrofluorescein (DCFH) was employed as the marker of the oxidative reaction. The distribution in aqueous and lipid compartments of the two radical initiators was determined by measuring the rate of consumption of the plasma hydrophilic and lipophilic endogenous antioxidants. In the presence of AAPH (20 mM), the order of consumption was: ascorbic acid > alpha-tocopherol > uric acid > beta-carotene, indicating a gradient of peroxyl radicals from the aqueous to the lipid phase. When MeO-AMVN was used (2mM), beta-carotene was consumed earlier than uric acid and almost at the same time as alpha-tocopherol, reflecting the diffusion and activation of MeO-AMVN in the lipophilic phase. The rate of BODIPY oxidation (increase in green fluorescence) significantly increased after the depletion of endogenous alpha-tocopherol and beta-carotene, whereas it was delayed for 180 min when AAPH was used instead of MeO-AMVN. The measurement of lipid oxidation in plasma was validated by adding to plasma the two lipophilic antioxidants, alpha-tocopherol and beta-carotene, whose inhibitory effects on BODIPY oxidation were dependent on the duration of the preincubation period and hence to their lipid diffusion. DCFH oxidation induced by AAPH only began after uric acid, the main hydrophilic plasma antioxidant, was consumed. In contrast, when MeO-AMVN was used, DCFH oxidation was delayed for 120 min, indicating its localization in the aqueous domain. In summary, the selective fluorescence method reported here is capable of distinguishing the lipophilic and hydrophilic components of the total antioxidant capacity of plasma.  相似文献   

4.
We examined by using 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) as a radical generator the ability of estrogens to scavenge carbon-centered and peroxyl radicals. Electron spin resonance signals of carbon-centered radicals from AAPH were diminished by catecholestrogens but not by phenolic estrogens, showing that catecholestrogens efficiently scavenged carbon-centered radicals. However, fluorescent decomposition of R-phycoerythrin by AAPH-derived peroxyl radicals was inhibited by catecholestrogens and phenolic estrogens. Evidently, peroxyl radicals were scavenged by catecholestrogens and by phenolic estrogens. However, the scavenging ability of 4-hydroxyestradiol was less than 2-hydroxyestradiol. Strand break of DNA induced by AAPH was inhibited by catecholestrogens, but not by phenolic estrogens under aerobic and anaerobic conditions. Inactivation of lysozyme induced by AAPH was completely blocked by 2-hydroxyestradiol under aerobic and anaerobic conditions, and by 4-hyroxyestradiol only under anaerobic conditions. Peroxidation of arachidonic acid by AAPH was strongly inhibited by catecholestrogens at low concentrations. Only large amounts of phenolic estrogens markedly inhibited lipid peroxidation. These results show that catecholestrogens were antioxidant against AAPH-induced damage to biological molecules through scavenging both carbon-centered and peroxyl radicals, but phenolic estrogens partially inhibited AAPH-induced damage because they scavenged only peroxyl radicals.  相似文献   

5.
The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2'-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 muM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37 degrees C). Competitive experiments show that the cis-isomer traps peroxyl radicals 30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

6.
Abstract

Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2′ azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by β-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

7.
The antioxidant activities of isoorientin-6″-O-glucoside were studied using various models. Isoorientin-6″-O-glucoside was more potent than Trolox, probucol and butylated hydroxytoluene (BHT) in reducing the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). It also scavenged superoxide anion, peroxyl and hydroxyl radicals that were generated by xanthine/xanthine oxidase, 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and Fe3+–ascorbate–EDTA–H2O2 system, respectively. The IC50 value, stoichiometry factor and second-order rate constant were 9.0 ± 0.8 μM, 1.8 ± 0.1 and 2.6 × 1010 M−1 s−1 for superoxide generation, peroxyl and hydroxyl radicals. However, isoorientin-6″-O-glucoside did not inhibit xanthine oxidase activity or scavenge hydrogen peroxide (H2O2), carbon radical or 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN)-derived peroxyl radical in hexane. Isoorientin-6″-O-glucoside inhibited Cu2+-induced oxidation of human low-density lipoprotein (LDL) as measured by fluorescence intensity, thiobarbituric acid-reactive substance formation and electrophoretic mobility. Since isoorientin-6″-O-glucoside did not possess pro-oxidant activity, it may be an effective water-soluble antioxidant that can prevent LDL against oxidation.  相似文献   

8.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

9.
《Free radical research》2013,47(10):1190-1200
Abstract

To study oxidative stress in biological systems, chemical compounds capable of producing free radicals have been widely used. Here, we compared two free-radical generators, 3-morpholinosydnonimine (SIN-1) and 2,2′-azo-bis(2-amidinopropane) hydrochloride (AAPH), by measuring the thiol oxidation kinetics of various thiols. We found that SIN-1 is >?30 times potent in causing thiol oxidation than AAPH. Kinetic simulations revealed that in the SIN-1 system (0.1 mM), superoxide, nitrogen dioxide and carbonate radicals are the major reactive species which, in combination, induce ~50% of thiol molecules to undergo one-electron oxidation, thereby forming the thiyl radical which propagates further thiol oxidation by direct coupling with thiolates. Similarly, the alkyl peroxyl radical derived from AAPH (3 mM) initiates comparable extent of one-electron oxidation and formation of the thiyl radical. In conclusion, our study provides experimental and theoretical evidence that SIN-1 is mainly an one-electron oxidizing agent that can be functionally mimicked by AAPH.  相似文献   

10.
Abstract

The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2′-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 μM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37°C). Competitive experiments show that the cis-isomer traps peroxyl radicals ~30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

11.
Neopterin and its reduced form, 7,8 dihydroneopterin afe pteridines released from macrophages and monocytes when stimulated with interferon gamma in vivo. The function of this response is unknown though there is an enormous amount of information available on the use of these compounds as clinical markers of monocyte/macrophage activation. We have found that in vitro 7,8-dihydroneopterin dramatically increases, in a dose dependent manner, the lag time of low density lipoprotein oxidation mediated by Cu++ ions or the peroxyl radical generator 2,2'-azobis (2-amidino propane) dihydrochloride (AAPH). 7,8-Dihydroneopterin also inhibits AAPH mediated oxidation of linoleate. The kinetic of the inhibition suggests that 7,8-dihydroneopterin is a potent chain breaking antioxidant which functions by scavenging lipid peroxyl radicals. No anti-oxidant activity was observed in any of the oxidation systems studied with the related compounds neopterin and pterin.  相似文献   

12.
Heterogeneity in molecular weight and degree of deacetylation (DDA) of chitosans from different sources and preparation methods were studied by fractionating chitosans, using semi-preparative SEC, and then determining molecular weight profiles of fractions by analytical SEC with multi-angle laser light scattering (SEC–MALLS), and degree of deacetylation (DDA) by 1H NMR. Fractionation of two high molecular weight chitosans from different manufacturers, produced fractions that spanned a wide range of molecular weight (number-average Mn), from 65 to 400 kDa in one case, that was not evident when unfractionated material was directly analyzed by SEC providing Mn = 188 kDa and PDI = Mw/Mn = 1.73. In a second case, fractions ranged from 20 to 600 kDa with unfractionated Mn = 145 kDa and PDI = 1.83. Fractionation of low molecular weight chitosans also showed a broad range of molecular weight in the original material, however, the fractions obtained with the TSKgel G4000W column in the Mn range of 5–100 kDa were essentially monodisperse with PDIs between 1.0 and 1.4. The DDA of one low molecular weight chitosan (10 kDa) produced by nitrous acid degradation was dependent on the Mn of the fraction. This semi-preparative fractionation procedure revealed important compositional heterogeneities of chitosans not evident in unfractionated material, and permitted the production of monodisperse low molecular weight chitosans with homogeneous properties.  相似文献   

13.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

14.
The recently discovered peroxyl radical scavenging properties of plasmalogen phospholipids led us to evaluate their potential interactions with alpha-tocopherol. The oxidative decay of plasmalogen phospholipids and of polyunsaturated fatty acids as induced by peroxyl radicals (generated from 2,2'-azobis-2-amidinopropane hydrochloride; AAPH) was studied in micelles using 1H-NMR and chemical analyses. In comparison with alpha-tocopherol, a 20- to 25-fold higher concentration of plasmalogen phospholipids was needed to induce a similar inhibition of peroxyl radical-mediated oxidation of polyunsaturated fatty acids. Plasmalogen phospholipids and alpha-tocopherol protected each other from oxidative degradation. In low-density lipoproteins (LDL) and micelles supplemented with plasmalogen phospholipids plus alpha-tocopherol, the peroxyl radical-promoted oxidation was additively diminished. The differences in the capacities to inhibit oxidation processes induced by peroxyl radicals between the plasmalogen phospholipids and alpha-tocopherol were less pronounced in the LDL particles than in the micelles. In conclusion, plasmalogen phospholipids and alpha-tocopherol apparently compete for the interaction with the peroxyl radicals. Oxidation processes induced by peroxyl radicals are inhibited in an additive manner in the presence of the two radical scavengers. The contribution of the plasmalogen phospholipids to the protection against peroxyl radical promoted oxidation in vivo is expected to be at least as important as that of alpha-tocopherol.  相似文献   

15.
Ho SC  Chiu SJ  Hu TM 《Free radical research》2012,46(10):1190-1200
Abstract To study oxidative stress in biological systems, chemical compounds capable of producing free radicals have been widely used. Here, we compared two free-radical generators, 3-morpholinosydnonimine (SIN-1) and 2,2'-azo-bis(2-amidinopropane) hydrochloride (AAPH), by measuring the thiol oxidation kinetics of various thiols. We found that SIN-1 is >?30 times potent in causing thiol oxidation than AAPH. Kinetic simulations revealed that in the SIN-1 system (0.1 mM), superoxide, nitrogen dioxide and carbonate radicals are the major reactive species which, in combination, induce ~50% of thiol molecules to undergo one-electron oxidation, thereby forming the thiyl radical which propagates further thiol oxidation by direct coupling with thiolates. Similarly, the alkyl peroxyl radical derived from AAPH (3 mM) initiates comparable extent of one-electron oxidation and formation of the thiyl radical. In conclusion, our study provides experimental and theoretical evidence that SIN-1 is mainly an one-electron oxidizing agent that can be functionally mimicked by AAPH.  相似文献   

16.
Red wine and its components have been shown to possess cardioprotective and anti-atherogenic effects. Additionally, red wine and many of its components like catechin, epicatechin, rutin, transresveratrol and quercetin possess antioxidant properties. Oxidized low density lipoprotein (LDL) is involved in the development of an atherosclerotic lesion. Red wine, therefore, may be anti-atherogenic because of its antioxidant effects on LDL modification. This study examined the antioxidant effects of catechin, epicatechin, rutin, transresveratrol, quercetin and Merlot wines on LDL oxidation. Merlot was chosen because although other red wines have been tested, limited information exists for this variety. Oxidation was carried out with AAPH (2,2-Azo-bis(2-amidinopropane) dihydrochloride) and AMVN (2,2-Azo-bis(2,4-dimethylvaleronitrile)), as water and lipid soluble peroxyl radical generating systems (FRGS), respectively. This allowed us to determine the lipophilic antioxidant characteristics of the wine and its components. Conjugated diene assays were used to measure LDL oxidation over 6 hrs. In an AAPH system, all polyphenolic compounds except transresveratrol displayed an antioxidant effect. LDL oxidation by AAPH was also inhibited by aliquots of Merlot wine. No antioxidant effects were observed in an AMVN environment except for a mild antioxidant effect by quercetin. Surprisingly, incubation of LDL with Merlot wine strongly protected against oxidation by AMVN. In summary, the five phenolic compounds displayed antioxidant effects in a water soluble free radical generating system, but only quercetin showed this in a lipid soluble one. However, red wine inhibited LDL oxidation by both water and lipid soluble free radical generating systems. Our data suggest, therefore, that red wines contain unidentified antioxidants that provide protection against LDL oxidation within a lipid soluble environment. (Mol Cell Biochem 263: 211–215, 2004)  相似文献   

17.
Monocyte cells are exposed to a range of reactive oxygen species (ROS) when they are recruited to a site of inflammation. In this study, we have examined the damage caused to the monocyte-like cell line U937 by peroxyl radicals and characterised the protective effect of the macrophage synthesised compound 7,8-dihydroneopterin.Exposure of U937 cells to peroxyl radicals, generated by the thermolytic breakdown of 2,2'-azobis(amidinopropane) dihydrochloride (AAPH), resulted in the loss of cell viability as measured by thiazolyl blue (MTT) reduction, and lactate dehydrogenase (LDH) leakage. The major form of cellular damage observed was cellular thiol loss and the formation of reactive protein hydroperoxides. Peroxyl radical oxidation of the cells only caused a small increase in cellular lipid oxidation measured. Supplementation of the media with increasing concentrations of 7,8-dihydroneopterin significantly reduced the cellular thiol loss and inhibited the formation of the protein hydroperoxides. High performance liquid chromatography (HPLC) analysis showed 7,8-dihydroneopterin was oxidised by both peroxyl radicals and preformed protein hydroperoxides to predominately 7,8-dihydroxanthopterin.The possibility that 7,8-dihydroneopterin is a cellular antioxidant protecting macrophage proteins during inflammation is discussed.  相似文献   

18.
Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO(*)) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage.  相似文献   

19.
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.  相似文献   

20.
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号