首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of antibiotic resistance genes in the delivered plasmids is one of the drawbacks of modern gene therapy and DNA vaccine applications. Here, we describe a strategy that allows for plasmid selection in bacterial hosts, without the requirement of any selection marker. Several bacterial strains were modified, so that the plasmid's replicational inhibitor RNA I could suppress the translation of a growth essential gene by RNA-RNA antisense reaction. An essential gene (murA) was modified such that a repressor protein (tetR) would hamper its expression. Only in the presence of plasmid and, hence, RNA I, was tetR turned down and murA expressed. Different commercially available plasmids could be selected by various modified Escherichia coli strains. We further designed a minimalistic plasmid devoid of any selection marker. All of the clones (n=6) examined, when the modified strain JM109-murselect was used for selection, contained plasmids. Thus, we have designed bacterial host strains that for the first time serve to select and maintain plasmids without the use of any selection marker or other additional sequence on the plasmid. Consequently, such plasmids may not only be safer, but due to their decreased size, advantages for the manufacturer and higher transfection efficiencies are anticipated.  相似文献   

2.
The human multiple drug resistance (MDR) gene has been used as a model for human gene transfer which could lead to human gene therapy. MDR is a transmembrane protein which pumps a number of toxic substances out of cells including several drugs used in cancer chemotherapy. Normal bone marrow cells express low levels of MDR and are particularly sensitive to the toxic effects of these drugs. There are two general applications of MDR gene therapy: (1) to provide drug-resistance to the marrow of cancer patients receiving chemotherapy, and (2) as a selectable marker which when co-transferred with a non-selectable gene such as the human beta globin gene can be used to enrich the marrow for cells containing both genes. We demonstrate efficient transfer and expression of the human MDR gene in a retroviral vector into live mice and human marrow cells including CD34+ cells isolated from marrow and containing the bulk of human hematopoietic progenitors. MDR gene transduction corrects the sensitivity of CD34+ cells to taxol, an MDR drug substrate, and enriches the marrow for MDR-transduced cells. The MDR gene-containing retroviral supernatant used has been shown to be safe and free of replication-competent retrovirus. Because of the safety of the MDR retroviral supernatant, and efficient gene transfer into mouse and human marrow cells, a phase 1 clinical protocol for MDR gene transfer into cancer patients has been approved to evaluate MDR gene transfer and expression in human marrow.  相似文献   

3.
BACKGROUND: Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. METHODS: The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. RESULTS: We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. CONCLUSIONS: These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.  相似文献   

4.
5.
在基因治疗中,造血干细胞因为具有自我更新及分化为各种血细胞系的能力而成为一种很有吸引力的靶细胞。将外源目的基因导入造血干细胞,以纠正或补偿因基因缺陷和异常引起的疾病,特别是血液疾病已取得重要进展,例如:腺苷脱氨酶缺陷病、血友病、地中海贫血症及镰状细胞性贫血症等。而慢病毒以其转染效率高,能够感染非分裂期细胞的特点成为转染造血干细胞的最适合载体,本文就造血干细胞的特性、载体的选择及临床应用和基因治疗的安全性等方面作一综述。  相似文献   

6.
CRISPR-Cas9系统是细菌在与噬菌体抗争的进化过程中产生的一种抵御外源DNA入侵的机制,能有效识别并剪切外源DNA。基于其识别切除外源DNA的原理,CRISPR-Cas9系统被开发成为新一代基因编辑工具。与ES打靶、ZFN、TALEN等技术途径相比,CRISPR-Cas9系统操作简便、效率高、成本低,有着极其广阔的应用前景。本文整理了近年内有关CRISPR-Cas9系统的最新文献报道,对该系统工作原理以及针对基因治疗的研究进展进行综述。  相似文献   

7.
基因治疗研究中脂质体介导的基因转移技术   总被引:2,自引:0,他引:2  
对于脂质体的深入研究特别是阳离子脂质体的研制使其逐步成为重要的基因转移载体之一,并且初步应用于基因治疗研究,同时多种靶向脂质体的研制也为体内靶向基因转移和表达奠定了基础。本文就脂质体的结构、功能、在基因治疗研究中的应用以及各种靶向脂质体的研制进行了介绍。  相似文献   

8.
9.
With the advent of safer and more efficient gene transfer methods, gene therapy has become a viable solution for many inherited and acquired disorders. Hematopoietic stem cells (HSCs) are a prime cell compartment for gene therapy aimed at correcting blood-based disorders, as well as those amenable to metabolic outcomes that can effect cross-correction. While some resounding clinical successes have recently been demonstrated, ample room remains to increase the therapeutic output from HSC-directed gene therapy. In vivo amplification of therapeutic cells is one avenue to achieve enhanced gene product delivery. To date, attempts have been made to provide HSCs with resistance to cytotoxic drugs, to include drug-inducible growth modules specific to HSCs, and to increase the engraftment potential of transduced HSCs. This review aims to summarize amplification strategies that have been developed and tested and to discuss their advantages along with barriers faced towards their clinical adaptation. In addition, next-generation strategies to circumvent current limitations of specific amplification schemas are discussed.  相似文献   

10.
Isoeugenol-O-methyltransferase (IEMT) is an enzyme involved in the production of the floral volatile compounds methyl eugenol and methyl isoeugenol in Clarkia breweri (Onagraceae). IEMT likely evolved by gene duplication from caffeic acid-O-methyltransferase followed by amino acid divergence, leading to the acquisition of its novel function. To investigate the selective context under which IEMT evolved, maximum likelihood methods that estimate variable d(N)/d(S) ratios among lineages, among sites, and among a combination of both lineages and sites were utilized. Statistically significant support was obtained for a hypothesis of positive selection driving the evolution of IEMT since its origin. Subsequent Bayesian analyses identified several sites in IEMT that have experienced positive selection. Most of these positions are in the active site of IEMT and have been shown by site-directed mutagenesis to have large effects on substrate specificity. Although the selective agent is unknown, the adaptive evolution of this gene may have resulted in increased effectiveness of pollinator attraction or herbivore repellence.  相似文献   

11.
Application of Thiosalicylic acid+Bacillus cereus; O-Acetylsalicylic acid+Pseudomonas fluorescens reduced root rot severity by 85 and 88% and enhanced root yields by 358 and 419%, respectively, against Fusarium solani induced root rot disease in Withania somnifera. Reduction in disease severity was correlated with defence-related enzymes peroxidase, polyphenol oxidase and phenyl ammonium lyase.  相似文献   

12.
A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.  相似文献   

13.
BACKGROUND: One of the major barriers to the clinical application of hematopoietic stem cell (HSC) gene therapy has been relatively low gene transfer efficiency. Other inadequacies of current transduction protocols are related to their multi-step procedures, e.g., using tissue-culture flasks, roller bottles or gas-permeable bags for clinical application. METHODS: In comparison with a conventional bag transduction protocol, a 'closed' hollow-fiber bioreactor system (HBS) was exploited to culture and transduce human peripheral blood CD34(+) progenitor cells (PBPC(MPS)) from patients with mucopolysaccharidosis type I (MPS I) using an amphotropic retroviral vector based on a murine Moloney leukemia virus LN prototype. Both short-term colony-forming cell (CFC) and long-term culture initiating cell (LTCIC) assays were employed to determine transduction frequency and transgene expression in committed progenitor cells and primitive progenitors with multi-lineage potentials. RESULTS: A novel ultrafiltration-transduction method was established to culture and transduce enzyme-deficient PBPC(MPS) over a 5-day period without loss in viability and CD34 identity (n = 5). Significantly higher transduction efficiencies were achieved in primary CFC that derived from the HBS (5.8-14.2%) in comparison with those from gas-permeable bags (undetectable to 1.7%; p < 0.01). Up to 15-fold higher-than-normal enzyme activity was found in selected PBPC(MPS)-LP1CD transductants. Moreover, higher gene transfer (4.4-fold) and expression in very primitive progenitors were observed in products from the HBS compared with bag experiments as indicated by CFC derived from primitive LTCIC. Remarkably, with relatively modest gene transfer levels in LTCIC from HBS experiments, the expression of the IDUA transgene corrected the enzyme-deficiency in 5-week long-term cultures (LTC). CONCLUSIONS: MPS I progenitor cells achieved normalized enzyme levels in LTC after transduction in a HBS system. These studies demonstrate the advantages of a bioreactor-transduction system for viral-mediated stem cell gene transfer.  相似文献   

14.
基因治疗中外源基因的导入   总被引:1,自引:0,他引:1  
基因治疗是将遗传物质导入靶细胞以达到治疗疾病的目的,目前基因治疗研究中的主要障碍是如何格外源基因导入靶细胞。本介绍基因治疗的原理和外源基因导入靶细胞时的常用方法,包括显微注射法、电穿孔法、基因枪粒子轰击法等。对基因治疗的现状、存在的问题及未来发展前景作了简要探讨。  相似文献   

15.
Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.  相似文献   

16.
自杀基因治疗是肿瘤基因治疗的手段之一,治疗效果与自杀基因能否被高效、选择性的导入肿瘤细胞有关。肿瘤选择性复制型腺病毒(conditionally replication adenovirus,CRADs)可以特异性的在肿瘤细胞中复制,在复制的同时所携带的治疗基因也大量表达。由CRAds介导的自杀基因,实现了对肿瘤的病毒治疗和基因治疗的结合,提高了治疗效率和使用复制型腺病毒的安全性。  相似文献   

17.
BACKGROUND: There is currently great interest in development of cell-based carriers for delivery of viral vectors to metastatic tumors. To date, several cell carriers have been tested based largely upon their predicted tumor-localizing properties. However, cell types may exist which can be mobilized from the circulation by a tumor which have not yet been identified. Here we use an unbiased screen of bone marrow (BM) cells to identify cells which localize to tumors and which might serve as effective candidate cell carriers without any prior prediction or selection. METHODS: Unsorted BM cells from green fluorescent protein (GFP)-transgenic donor mice were adoptively transferred into C57Bl/6 mice bearing pre-established subcutaneous B16 melanoma tumors. Forty-eight hours and eight days later, tumors, organs and blood were analyzed for GFP-expressing cells by flow cytometry. The phenotype of GFP cells in organs was determined by co-staining with specific cell surface markers. RESULTS: CD45(+) hematopoietic cells were readily detected in tumor, spleen, bone marrow, blood and lung at both time points. Within these CD45(+) cell populations, preferential accumulation in the tumor was observed of cells expressing Sca-1, c-kit, NK1.1, Thy1.2, CD14, Mac-3 and/or CD11c. Lymphodepletion increased homing to spleen and bone marrow, but not to tumors. CONCLUSIONS: We have used an in vivo screen to identify populations of BM-derived donor cells which accumulate within tumors. These studies will direct rational selection of specific cell types which can be tested in standardized assays of cell carrier efficiency for the treatment of metastatic tumors.  相似文献   

18.
Analysis of the growth hormone (GH) gene in 12 strains of White Leghorn chickens revealed restriction fragment length polymorphisms (RFLPs) at three Msp I sites and at a Sac I site. Based on linkage disequilibrium analysis, they gave rise to eight different alleles (i.e. combinations of RFLPs), with five occurring at frequencies above 5% in at least one strain. Pairs of GH–RFLPs were at near maximal linkage disequilibrium, suggesting either a lack of recombination or the presence of selection pressure during evolution of the GH gene. Allele frequencies were determined in 12 non-inbred strains derived from three different genetic bases. These strains had been selected either for an array of egg production traits, resistance to Marek's disease or resistance to avian leukosis. Selection for disease resistance was consistently correlated with an increase in the frequency of one of the alleles. One strain segregated for only two alleles, which differed by three RFLPs. Analysis of variance in this strain indicated that the GH allele co-selected with resistance was associated with a delayed onset of ovulation but a higher persistency of ovulation as age progressed, resulting in an overall increase of egg production by 15% (age at first egg to 497 days). The resistance-associated GH allele was dominant for the onset of ovulation and recessive for the persistency of egg production. There was no significant effect of the GH genotype on juvenile body weight, egg weight or egg specific gravity.  相似文献   

19.
Balb/c nu/nu mice were inoculated intratracheally with multidrug-resistant human lung cancer cells GLK containing p53 mutation at codon 245 and treated with intratracheal instillation of p53-wt retroviral vector (pDOR53W) to increase cell chemosensitivity, and then with intraperitoneal injection of doxorubicin. 30 d after tumor cell inoculation, 75% of the control mice showed macroscopic tumors in the lung. Sole pDOR53W suppressed GLK tumor formation in 68 % of mice; sole doxorubicin 33. 3 % , but the combination of pDOR53W and doxorubicin 88.9%. The exogenous p53 sequence was detected and confirmed in the tumor that grew after treatment with pDOR53W retroviral vector by PCR and Southern blot hybridization with p53 cDNA. These results suggested that di-rect administration of a retroviral vector expressing p53-wt combined with treatment of anticancer agent was an effec-tive therapeutic method for multidrug-resistant human lung cancer.  相似文献   

20.
基因编辑技术及其在基因治疗中的应用   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号