首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Airway anesthesia with inhaled aerosolized lidocaine has been associated with increases in minute ventilation (VE) and mean inspiratory flow rate (VT/TI) during CO2 inhalation. However, it is unclear whether these increases are local effects of the anesthesia or systemic effects of absorbed and circulating lidocaine. To evaluate this 20 normal subjects were treated on separate days with aerosolized lidocaine, intravenous lidocaine, aerosolized control solution, or intravenous control solution, and the effects of each treatment on VE and VT/TI were determined and compared during room-air breathing and inhalation of 5% CO2-95% O2. None of the treatments altered VE or VT/TI during room-air breathing. Aerosolized lidocaine produced small (5.9-6.0%) increases in VE and VT/TI during CO2 inhalation, but these effects were not present after intravenous lidocaine despite equivalent lidocaine blood levels. We concluded that the increases in VE and VT/TI after aerosolized lidocaine were local effects of airway anesthesia rather than systemic effects of absorbed and circulating lidocaine.  相似文献   

3.
4.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

5.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

6.
Ventilatory response to high-frequency airway oscillation in humans   总被引:1,自引:0,他引:1  
To investigate respiratory control during high-frequency oscillation (HFO), ventilation was monitored in conscious humans by respiratory inductive plethysmography during application at the mouth of high-frequency pressure oscillations. Studies were conducted before and after airway and pharyngeal anesthesia. During HFO, breathing became slow and deep with an increase in tidal volume (VT) of 37% (P less than 0.01) and inspiratory duration (TI) of 34% (P less than 0.01). Timing ratio (TI/TT) increased 14% (P less than 0.05) and respiratory frequency (f) decreased 12% (P less than 0.01). Mean inspiratory flow (VT/TI) did not change during HFO. Following airway anesthesia, VT increased only 26% during HFO (P less than 0.01), whereas significant changes in TI, TI/TT, and f were not observed. Pharyngeal anesthesia failed to diminish the effect of HFO on TI, TT, or f, although the increase in VT was reduced. These results indicate that 1) HFO presented in this manner alters inspiratory timing without affecting the level of inspiratory activity, and 2) receptors in the larynx and/or lower airways may in part mediate the response.  相似文献   

7.
The reported investigations were carried out on 17 healthy men aged 20-27 years subjected to a 15 minute submaximal exercise on an Elema-Schonander cycle ergometer while breathing ambient air or a helium-oxygen mixture (O2 20% and He 80%). During the exercise test the heart rate was recorded from the ECG tracings, with the respiratory rate and respiratory volume, minute ventilation and arterial blood pressure. The concentrations of lactate (LA), pyruvate (PA) and glucose were determined in the serum of venous blood obtained before and 3 minutes after the exercise. Favourable changes of the reaction of the organism to exercise were observed while the subjects breathed the helium-oxygen mixture. The minute ventilation increased owing to increased respiratory volume, and the exercise caused lower rises in LA, PA and the LA/PA ratio. This may suggest a reduction of respiration cost and a decrease of anaerobic metabolism under these conditions.  相似文献   

8.
To evaluate the difference of ventilatory and gas exchange response differences between arm and leg exercise, six healthy young men underwent ramp exercise testing at a rate of 15 W.min-1 on a cycle ergometer separately under either spontaneous (SPNT) or fixed (FIX) breathing modes, respectively. Controlled breathing was defined as a breathing frequency (fb; 30 breaths.min-1) which was neither equal to, nor a multiple of, cranking frequency (50 rev.min-1) to prevent coupling of locomotion and respiratory movement, i.e., so-called locomotor-respiratory coupling (LRC). Breath-by-breath oxygen uptake (VO2), ventilation (VE), CO2 output (VCO2), tidal volume (VT), fb and end-tidal PCO2 (PETCO2) were determined using a computerized metabolic cart. Arm exercise engendered a higher level of VO2 at each work rate than leg exercise under both FIX and SPNT conditions. However, FIX did not notably affect the VO2 response during either arm or leg exercise at each work rate compared to SPNT. During SPNT a significantly higher fb and lower PETCO2 during arm exercise was found compared with leg exercise up to a fb of 30 breaths.min-1 while VE and VT were nearly the same. During fixed breathing when fb was fixed at a higher rate than during SPNT, a significantly lower PETCO2 was observed during both exercise modes. These results suggest that: 1) FIX breathing does not affect the VO2 response during either arm or leg exercise even when non-synchronization between limb locomotion movement and breathing rate was adopted; 2) at a fb of 30 breaths.min-1 FIX breathing induced a hyperventilation resulting in a lower PETCO2 which was not associated with the metabolic rate during either arm or leg exercise, showing that VE during only leg exercise under the FIX condition was significantly higher than under the SPNT condition.  相似文献   

9.
10.
11.
Seven human spinal cord-lesioned subjects (SPL) underwent electrically induced muscle contractions (EMC) of the quadriceps and hamstring muscles for 10 min: 5 min control, 2 min with venous return from the legs occluded, and 3 min postocclusion. Group mean changes in CO2 output compared with rest were +107 +/- 30.6, +21 +/- 25.7, and +192 +/- 37.0 (SE) ml/min during preocclusion, occlusion, and postocclusion EMC, respectively. Mean arterial CO2 partial pressure (PaCO2) obtained from catheterized radial arteries at 15- to 30-s intervals showed a significant (P less than 0.05) hypocapnia (36.2 Torr) during occlusion and a significant (P less than 0.05) hypercapnia (38.1 Torr) postocclusion relative to a group mean preocclusion EMC PaCO2 of 37.5 Torr. Relative to preocclusion EMC, expired ventilation (VE) decreased during occlusion and increased after release of occlusion. However, changes in VE always occurred after changes in end-tidal PCO2 (mean 41 s after occlusion and 10 s after release of occlusion). In the two subjects investigated during hyperoxia, the VE and PaCO2 responses to occlusion and release did not differ from normoxia. We conclude that the data do not support mediation of the EMC hyperpnea in SPL by humoral mechanisms that others have proposed for mediation of the exercise hyperpnea in spinal cord-intact humans.  相似文献   

12.
The effect of hypercapnic ventilatory response was examined in anaesthetized spontaneously breathing rats by using rebreathing techniques both at supine and -30 degrees head-down tilt positions. No significant differences were found in the minute ventilation response between the supine and head-down positions during hypercapnic stimulations. In contrast, we found that hypercapnia-stimulated breathing affected the relationship between deltaPoes and deltaP(ET), CO2. This study demonstrates that higher peak deltaPoes was developed in order to maintain the same ventilation in the supine and head-tilt position. The higher deltaPoes/deltaP(ET), CO2 head-down ratio than the supine was a result of increased airflow impedance of the total respiratory system while head-down. It is concluded that ventilation at head-down is regulated in such a way as to maintain the pH and Paco, despite mechanical loading imposed by the environment. Hence, during hypercapnic stimulation the ventilatory response in head-down position is shaped by interaction of chemical drives and mechanical afferent information arising.  相似文献   

13.
Ventilatory kinetics during exercise (30 W for 6 min) were studied in 3 asthmatics, 14 patients with chronic airway obstruction (11 with bronchial or type B disease, 3 with emphysematous or type A disease), and in 5 normal age-matched controls. The measure of ventilatory increase during early exercise, alpha 1-3%, was calculated as (avg minute ventilation over 1st-3rd min of exercise--resting minute ventilation)/(avg minute ventilation over 4th-6th min of exercise--resting minute ventilation) X 100. Arterial pH, PO2, and PCO2 (PaCO2) were measured in vitro at rest and within 20 s of termination of exercise. Respiratory PaCO2 oscillations had previously been monitored at rest in the patients (indirectly as in vivo arterial pH, using a fast-response pH electrode) and quantified by upslope (delta PaCO2/delta t). alpha 1-3% was normal in asthmatics (whose respiratory oscillations as a group showed least attenuation) and in type A patients (whose respiratory oscillations as a group were most attenuated). In type B patients reduction in alpha 1-3% correlated with attenuation of delta PaCO2/delta t (r = 0.75; P less than 0.01). There was no significant correlation between delta PaCO2/delta t and change of in vitro PaCO2 from rest to the immediate postexercise period. These findings are consistent with the hypothesis that attenuation of delta PaCO2/delta t slows ventilatory kinetics during exercise in type B but not type A patients. Intact respiratory oscillations are not necessary for CO2 homeostasis after the first few minutes of exercise.  相似文献   

14.
15.
The effect of a progressively increasing work rate (15 W X min-1) up to exhaustion on the time course of O2 uptake (VO2), ventilation (VE) and heart rate (HR) has been studied in weight lifters (WL) in comparison to endurance cyclists (Cycl) and sedentary controls (Sed). VO2 and VE were measured as average value of 30-s intervals by a semiautomatic open circuit method. VO2max was 2.55 +/- 0.33; 4.29 +/- 0.53 and 2.86 +/- 0.19 l X min-1 in WL, Cycl and Sed respectively. With time and work rate, while VO2 and HR increased linearly, VE changed its slope at two levels. The 1st VE change occurred at a work load corresponding to a mean (+/- SD) VO2 of 1.50 +/- 0.26; 1.93 +/- 0.34; and 1.23 +/- 0.14 l X min-1 in WL, Cycl, and Sed respectively. VO2 values corresponding to the second VE change of slope were 2.18 +/- 0.32 in WL; 3.48 +/- 0.53 in Cycl and 2.17 +/- 0.28 l X min-1 in Sed. The first change of slope might be the consequence of the different readjustment of VO2 on-response and hence of early lactate in the different subjects. The second change seems to be comparable to the conventional anaerobic threshold and is achieved in all subjects when VE vs time slope is 7-10 l X min-1/min of exercise.  相似文献   

16.
Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response toexercise in diabetic subjects with autonomic neuropathy.J. Appl. Physiol. 81(5):1978-1986, 1996.We have used diabetic autonomic neuropathy as amodel of chronic pulmonary denervation to study the ventilatoryresponse to incremental exercise in 20 diabetic subjects, 10 with(Dan+) and 10 without (Dan) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan subjectsachieved lower O2 consumption andCO2 production(CO2) thancontrol subjects at peak of exercise, they attained similar values ofeither minute ventilation(E) oradjusted ventilation (E/maximalvoluntary ventilation). The increment of respiratory rate withincreasing adjusted ventilation was much higher in Dan+ than inDan and control subjects (P < 0.05). The slope of the linearE/CO2relationship was 0.032 ± 0.002, 0.027 ± 0.001 (P < 0.05), and 0.025 ± 0.001 (P < 0.001) ml/min inDan+, Dan, and control subjects, respectively. Bothneuromuscular and ventilatory outputs in relation to increasingCO2 were progressivelyhigher in Dan+ than in Dan and control subjects. At peak ofexercise, end-tidal PCO2 was muchlower in Dan+ (35.9 ± 1.6 Torr) than in Dan (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects.We conclude that pulmonary autonomic denervation affects ventilatoryresponse to stressful exercise by excessively increasing respiratoryrate and alveolar ventilation. Reduced neural inhibitory modulationfrom sympathetic pulmonary afferents and/or increasedchemosensitivity may be responsible for the higher inspiratoryoutput.

  相似文献   

17.
18.
The ventilatory response to electrically induced contraction (EIC) and passive movement (PM) of hindlimb muscles at different levels of anesthesia was studied in 11 chloralose-urethan anesthetized dogs with and without rhizotomy. The level of anesthesia was assessed by corneal reflexes and measurements of the ventilatory response to hypercapnia. Muscle contraction was induced by electrically stimulating the peripheral cut ends of the sciatic and femoral nerves for 4-5 min, and PM was induced manually at the same frequency and amplitude as during EIC. In spinal intact dogs (n = 7), initial rapid increases in minute ventilation (VE) during EIC and PM were found in both light and deep anesthesia. Further increases in VE above the initial rise were seen during EIC but not PM. The initial rapid increases in VE did not differ between the two anesthetic levels. The steady-state ventilatory response during EIC decreased as anesthesia deepened but did not do so during PM. Rhizotomy (n = 4) abolished the initial rapid increase in VE during EIC and PM and the steady-state VE response to PM at both anesthetic levels. These results suggest that the transitional ventilatory response is neurally mediated from the muscles and not affected by the level of general anesthesia. Additionally, the anesthesia-induced reduction of ventilatory response may be due to depression of responsiveness to CO2 rather than to the inspiratory motoneuron pathway.  相似文献   

19.
This paper reviewed in short neural and humoral factors which might be responsible for inducing exercise hyperpnea. As one of the neural factors afferent signals which arise in the exercising limbs and are transmitted via group III or IV high threshold sensory fibres were involved. The other neural factor is command signals originating in the central nervous system and being fed onto the respiratory center. Hypothalamic locomotor region is assumed to be a possible locus to integrate these peripheral and central neural signals. There are enough evidences to believe that humoral factors mediated via cardiac output is also essential for the hyperpnea. Changes in VCO2 is well correlated with those of VE in dynamic as well as in steady-state response. Oscillations in PaCO2 can be assumed to play a role to link metabolic CO2 changes to those in ventilation. Thus, no single factor can explain the whole process of exercise hyperpnea. Poon's optimization model may give a key to integrate complicated and coflicting experimental results in a unique concept.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号