首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Australian state of Victoria, the history of koalas and their management has resulted in the homogenisation and reduction of genetic diversity in many contemporary populations. Decreased genetic diversity may reduce a species’ ability to adapt to future environmental pressures such as climate change or disease. The South Gippsland koala population is considered to be unique in Victoria, as it is believed to be a remnant population, not originating from managed populations that have low genetic variation. This study investigated genetic structure and diversity of koalas in South Gippsland, with comparison to other populations in Victoria (French Island/Cape Otway, FI and Raymond Island, RI), New South Wales and south east Queensland. Population analyses were undertaken using both microsatellite genotype and mitochondrial DNA sequence data. Non-invasive sampling of koala scats was used to source koala DNA, allowing 222 South Gippsland koalas to be genotyped. Using nuclear data the South Gippsland koala population was found to be significantly differentiated (Djost 95% CI SG–RI?=?0.03–0.06 and SG–FI?=?0.08–012) and more diverse (AR 95% CI SG?=?4.7–5.6, RI?=?3.1–3.3, FI?=?3.0–3.3; p?=?0.001) than other Victorian koala populations, supporting the premise that koalas in the South Gippsland region are part of a remnant population, not derived from translocated island stock. These results were also supported by mitochondrial data where eight haplotypes (Pc4, Pc17, Pc26, Pc27, and Pc56–Pc59) were identified in South Gippsland while a single haplotype (Pc27) was found in all island koalas tested. Compared to other Victorian koala populations, greater genetic diversity found in South Gippsland koalas, may provide this population with a greater chance of survival in the face of future environmental pressures. The South Gippsland koala population is, therefore, of high conservation significance, warranting the implementation of strategies to conserve this population and its diversity into the future.  相似文献   

2.
The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species’ range. Eighteen different haplotypes were defined in the ≈ 860 bp mtDNA control region, as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 ± 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene flow currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.  相似文献   

3.
Habitat fragmentation can act to cause reproductive isolation between conspecifics and undermine species’ persistence, though most studies have reported the genetic condition of populations that have already declined to a very small size. We examined genetic diversity within the vulnerable, declining koala (Phascolarctos cinereus) population in Southeast Queensland, Australia to determine the genetic impact of ongoing threatening processes. Five hundred and twelve koalas from ten Southeast Queensland Local Government Areas on the mainland and one island were genotyped at six polymorphic microsatellite loci. Based on Bayesian cluster analysis incorporating spatial data, the regional koala population was subdivided into six clusters, with location of major roads and rivers appearing to be consistent with being barriers to gene flow. The distribution of mtDNA control region haplotypes identified distinct coastal and inland clades suggesting that historically there was gene flow between koalas along the coast (though little interchange between coastal and inland animals). In contrast, koalas from the Koala Coast (Brisbane City, Logan City and Redland Shire) were shown by microsatellite analysis to be genetically distinct from adjacent areas. It is likely, therefore, that more recent reductions in population size and restricted gene flow through urbanisation have contributed to the genetic differentiation of koalas in the Koala Coast region.  相似文献   

4.
This study continues the investigation of genetic variation in the populations of native and acclimatized in the Azov-Black Sea basin pilengas from the Sea of Japan. The previous comparison based on allozyme analysis was supplemented by analysis of restriction polymorphism of a mitochondrial DNA fragment containing the cytochrome b gene and the D-loop. Five out of fifteen endonucleases tested detected polymorphic sites. In the samples of native and acclimatized pilengas, five common haplotypes were found; ten and three "population-specific" haplotypes were detected in the Far Eastern and the Azov populations, respectively. The differences in haplotype distributions between these populations were highly significant (P < 0.001). The mtDNA variation was lower in the Azov than in the Far Eastern population (haplotype diversity mu respectively 6.35 +/- 0.27 and 9.14 +/- 0.55), which is in good agreement with the decrease in the number of polymorphic loci and the mean number of alleles per locus, found earlier for allozyme markers in this population. The reasons for these differences in the acclimatized population are discussed.  相似文献   

5.
Koalas are an iconic species of charismatic megafauna, of substantial social and conservation significance. They are widely distributed, often at low densities, and individuals can be difficult to detect, making population surveys challenging and costly. Consequently, koala population estimates have been limited and the results inconsistent. The aims of this study were to estimate the distribution, relative abundance and population size of the koalas on Magnetic Island, far north Queensland. Population densities were estimated in 18 different vegetation types present on the island using a Fecal Standing Crop Method. Koala density ranged from 0.404 ha−1, recorded in forest red gum and bloodwood woodland, to absence from eight of the vegetation types surveyed. The second highest density of 0.297 koalas ha−1 was recorded in mixed eucalypt woodland, which covers 45% of the island. The total abundance of koalas on Magnetic Island, not including those present in urban areas, was estimated at 825±175 (SEM). The large variation in koala density across vegetation types reinforces the need for sampling stratification when calculating abundance over large areas, as uniformity of habitat quality cannot be assumed. In this context, koala populations also occur in low densities in areas generally regarded as poor quality koala habitat. These results highlight the importance of protecting vegetation communities not traditionally considered to have high conservation value to koalas, as these habitats may be essential for maintaining viable, widespread, low-density populations. The results from this study provide a baseline to assess future trends in koala distribution, density and abundance on Magnetic Island.  相似文献   

6.
Randomly amplified polymorphic DNA (RAPD) variation in populations of the koala, Phascolarctos cinereus, was investigated, revealing significant differences in the level of diversity between southern and northern regions of eastern Australia. Of the 20 polymorphic RAPD markers identified in koalas, 4-7 were polymorphic in southern populations, while 12-17 were polymorphic in northern populations. Analysis of molecular variance revealed a significant difference in the estimated variance between koalas from northern and those from southern regions (P < 0.001), where populations from the north were greater than twice as variable as their southern cousins. The total genetic diversity observed was attributed to regional differences (30.91%), population differences within a region (11.77%), and differences among individuals within a population (57.32%). For the within-region analyses, a large proportion of the genetic diversity was attributable to individual differences within a population, 80.34% for the north and 91.23% for the south. These results demonstrate that RAPD markers are useful for determining population structure among koalas.  相似文献   

7.
Significant changes in the distribution and persistence of species have been driven by Pleistocene cyclical climate changes and, more recently, by human modification of the environment. In eastern Australia, Pleistocene cyclical patterns in temperature and aridity led to the expansion and retraction of rainforest and likely affected the distribution of the koala (Phascolarctos cinereus, family Phascolarctidae), a species preferring dry or open woodland. More recently, anthropogenic landscape modification has led to a large‐scale change in distribution of the koala following the destruction of approx. 75 000 ha of subtropical rainforest in north‐east New South Wales termed the ‘Big Scrub’. Sharing of the control region haplotypes to the north and south of this region indicate historical connectivity of coastal koala populations. However, the majority (110/115) of sampled koalas from this region shared a single mitochondrial control region haplotype, suggesting that koalas did not persist in multiple refugial pockets within a heterogenous rainforest but expanded into the region following deforestation. Bayesian cluster analysis of microsatellite data consistently identified two clusters of koalas. One cluster, in the north of the area, had high microsatellite diversity (10 alleles per locus, He = 0.79) and clustered with koalas further to the north, thus suggesting a southerly expansion into the cleared area. To the south was a cluster with significantly lower diversity (six alleles per locus, He = 0.59, P < 0.001). It is possible there has been restricted or filtered movement of koalas between these clusters, which coincides with a cleared river valley and associated roads or immigration from populations both to the north and to the south. This study gives an insight into the timescale of changes in species distribution following rapid alterations to suitable habitat.  相似文献   

8.
Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 10(1) to 10(4), but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty-nine mtDNA nucleotide-substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2-5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide-substitution haplotypes and length-variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once-glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five-region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.  相似文献   

9.
Analysis of mitochondrial DNA (mtDNA) haplotypes of Sclerotinia sclerotiorum points to a common origin of some genotypes from agricultural populations, especially when compared with two wild populations that are sharply distinguished from the agricultural sample and from each other. Five agricultural population samples from canola (Alberta, Canada and Norway), cabbage (North Carolina, USA), sunflower (Manitoba, Canada and Queensland, Australia) and two Norwegian populations from a wild plant, Ranunculus ficaria were compared. Haplotypes were determined by Southern hybridization of purified organelle DNA from S. sclerotiorum and Neurospora crassa to total genomic DNA of S. sclerotiorum. Each isolate had one haplotype. Haplotypes of S. sclerotiorum from R. ficaria were different between the two wild populations and also from all haplotypes observed in the agricultural populations. Among the wild isolates, DNA fingerprint, mtDNA haplotype and location in the sampling transect were all associated. Among the agricultural isolates, four haplotypes were observed in at least two agricultural populations and one haplotype was observed in all agricultural populations. In the Canadian canola sample some clones had one mtDNA haplotype, indicating association with DNA fingerprint, some clones had more than one haplotype, and some groups of clones shared haplotypes. Some of the haplotype diversity may be due to the presence of extra-chromosomal elements associated with the mitochondria of S. sclerotiorum.  相似文献   

10.
Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.  相似文献   

11.
Surveys of mitochondrial DNA (mtDNA) variation in the giant tiger prawn, Penaeus monodon, using restriction fragment length polymorphisms have provided the first clear evidence that the Indo-West Pacific region is a site of accumulation of genetic diversity rather than a site of origin of genetic diversity. No haplotyes were found in common between a group of five southeast African populations and a group of five Australian (including Western Australia) and three southeast Asian populations. The dominant haplotype was different in the Australian and southeast Asian population groups. Genetic diversity (pi) was greatest in Indonesia (pi averaged 0.05), less in the Philippines and Australia (pi averaged 0.01), and markedly less in the southeast African and the West Australian populations (pi averaged 0.003). The high diversity of the southeast Asian populations resulted from the occurrence in those populations of a set of haplotypes found only in southeast Asia but derived from the southeast African haplotypes. These genetic variants therefore evolved in the Indian Ocean and later migrated into the Indo-West Pacific region. Low genetic variation in the geographically marginal populations in southeast Africa and Western Australia is considered to be the result of bottlenecks, but mismatch distributions suggest that large population sizes have been maintained in Indonesian populations for long periods.  相似文献   

12.
The 2019–2020 Australian bushfires were unprecedented both in extent and severity, impacting wildlife through direct mortality as well as habitat damage. More than 10% of koala habitat is estimated to have been affected by fires. Estimating the number of koalas lost is crucial to assess koala conservation status and to determine the appropriate management actions required. However, this is not a trivial task, as accurate data on koala distribution and population density before the fires is patchy. Acknowledging this weakness, we sought to estimate fire impact on koalas at specific sites, by comparing habitat areas affected by the fire with habitat areas that were unaffected by the fire, pairing closely related study sites (based on geography and vegetation). To compare koala density, we deployed two koala detection methods; drone-acquired thermal imagery and detection dogs coupled with genetic fingerprinting, in four fire-affected sites paired with four control sites in New South Wales and Queensland. Through drone surveys, we detected 140 koalas in 5,240 ha in New South Wales. The detection dogs found 144 scat samples corresponding to 79 unique koalas in 77 ha of transects in Queensland. Our preliminary results show many koalas were still present in fire-affected areas after the 2019–2020 bushfire season. Koala density was 24 to 71% lower in fire-affected sites compared with control sites in three of the habitat pairs, whereas unexpectedly, in the fourth pair, we observed a 317% higher koala density in the fire-affected site. This underlined that koalas can be present in fire-affected areas and that monitoring their health could be critical for months after the fires.  相似文献   

13.
Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity.  相似文献   

14.
The genetic structure of four populations of Pararasbora moltrechti, an endemic species of the Cyprinidae in Taiwan, was investigated based on the genetic variation of mtDNA Cyt b gene and five microsatellite loci. High haplotype diversity (h = 0.92) but low nucleotide diversity (0.004) in mtDNA was detected in this endangered species. In total, 33 haplotypes and four clusters were identified in its mtDNA. Nevertheless, low correspondence was found between geographical division and mtDNA clusters. In contrast, Bayesian cluster analysis of the microsatellite data identified four genetic groups and revealed highly structured populations. Significantly negative Tajima's D statistics and mismatch distribution analyses suggest that P. moltrechti populations may have experienced a demographic expansion. In light of the results of a nested clade analysis of mtDNA haplotypes, we conclude that recent population fluctuations and restricted gene flow played major roles in shaping the spatial genetic structure of P. moltrechti populations.  相似文献   

15.
The koala, Phascolarctos cinereus, is an iconic Australian wildlife species facing a rapid decline in South‐East Queensland (SEQLD). For conservation planning, the ability to estimate the size of koala populations is crucial. Systematic surveys are the most common approach to estimate koala populations but because of their cost they are often restricted to small geographic areas and are conducted infrequently. Public interest and participation in the collection of koala sighting data is increasing in popularity, but such data are generally not used for population estimation. We modeled monthly sightings of koalas reported by members of the public from 1997 to 2013 in SEQLD by developing a self‐exciting spatio‐temporal point process model. This allowed us to account for characteristics that are associated with koala presence (which vary over both space and time) while accounting for detection bias in the koala sighting process and addressing spatial clustering of observations. The density of koalas varied spatially due to the heterogeneous nature of koala habitat in SEQLD, with a mean density of 0.0019 koalas per km2 over the study period. The percentage of land areas with very low densities (0–0.0005 koalas per km2) remained similar throughout the study period representing, on average, 66% of the total study area. The approach described in this paper provides a useful starting point to allow greater use to be made of incidental koala sighting data. We propose that the model presented here could be used to combine systematic koala survey data (which is spatially restricted, but more precise) with koala sighting data (which is incidental and often biased by nature, but often collected over large geographical areas). Our approach could also be adopted for modeling the density of other wildlife species where data is collected in the same manner.  相似文献   

16.
Mitochondrial DNA diversity was studied at four loci in six natural populations of the tsetse fly Glossina pallidipes from Zimbabwe, Mozambique, Kenya, and Ethiopia. Single-locus diversity varied from 0.39 at 12S to 0.65 at COII. A total of 32 haplotypes was found with a mean of 6.4 +/- 2.9 per locus. To study breeding structure, diversity at two loci, COII and 16S2, was evaluated in 18 populations sampled from an area of approximately 1,611,000 km2 and in three laboratory cultures. Twenty-six haplotypes were detected at the two loci and mean haplotype diversity over all natural populations was 0.63. A high degree of population subdivision was detected within and among the Ethiopian and Kenya populations. The Zimbabwe and Zambia populations showed much less variation and differentiation than the northern populations. A population in Mozambique showed high levels of haplotype variation and affinities closest to populations in eastern Kenya, some 1700 km to the north. Analysis of variance of haplotype frequencies showed that 51.5% of the total lay within populations, 13% among populations within five nested groups, and 35.5% among the five groups. Wright's FST was 0.485, Nei's GST was 0.33, and Weir and Cunningham's theta = 0.45. Ecological data show that G. pallidipes is highly vagile. The large amount of genetic differentiation may be explained by genetic drift that occurred in scattered, relict populations during the rinderpest panzootic of the late 19th and early 20th centuries.  相似文献   

17.
This study continues the investigation of genetic variation in the populations of native and acclimatized in the Azov-Black Sea basin pilengas from the Sea of Japan. The previous comparison based on allozyme analysis was supplemented by analysis of restriction polymorphism of a mitochondrial DNA fragment containing the cytochrome b gene and the D-loop. Five out of fifteen tested endonucleases detected polymorphic sites. In the samples of native and acclimatized pilengas, five common haplotypes were found; ten and three “unique” haplotypes were detected in the Far Eastern and the Azov populations, respectively. The differences in haplotype distributions between these populations were highly significant (P < 0.001). The mtDNA variation was lower in the Azov than in the Far Eastern population (haplotype diversity μ respectively 6.35 ± 0.27 and 9.14 ± 0.55), which is in good agreement with the decrease in the number of polymorphic loci and the mean number of alleles per locus, found earlier for allozyme markers in this population. The reasons for these differences in the acclimatized population are discussed.  相似文献   

18.
Breeding structure of Glossina morsitans submorsitans Newstead was evaluated by using genetic markers in mitochondrial DNA where diversity was scored at two loci in five natural populations from The Gambia and two populations in Ethiopia (form ugandensis Vanderplank), countries separated by c. 5450 km. Twenty six haplotype combinations were found, of which 17 were shared among two or more populations. Nine haplotypes were found in The Gambia and 23 haplotypes in Ethiopia. There were 12 unique haplotypes. Only six haplotypes were shared between the two countries. Populations in The Gambia (he = 0.26 +/- 0.04) showed less than a third of the diversity of populations in Ethiopia (he = 0.84 +/- 0.03). This suggests recovery from an earlier reduction in population. In a nested analysis of molecular variance of haplotype frequencies, 65% of the variance was due to differences within populations, 34% to differences between populations grouped by country, and only 1% was due to differences among populations within countries. In terms of gene flow, the fixation index FST = 0.35, which leads to an estimate by Wright's island model of less than one reproducing migrant per generation exchanged between the eastern and western submorsitans populations. Nei's genetic similarity measure showed a deep division between Gambian and Ethiopian populations.  相似文献   

19.
中国近海银鲳线粒体COⅠ基因序列变异分析   总被引:1,自引:0,他引:1  
对采自黄海、东海和南海的7个银鲳群体的线粒体COⅠ基因序列变异进行分析,研究银鲳的遗传多样性、遗传结构和群体历史动态。在所分析的111个个体中检测到16个单倍型。7个群体呈现出高的单倍型多样性(h=0.564~0.688) 和低的核苷酸多样性(π=0.001~0.003)。单倍型遗传学关系、两两群体间的FST值和分子方差分析均表明中国近海7个银鲳群体间的遗传分化不显著。中性检验和核苷酸不配对分析均表明中国近海银鲳经历了晚更新世的群体扩张事件,扩张时间约为6.0×104~1.04×105 年前。研究结果表明,银鲳的卵和幼体具有较强的扩散能力、中国近海的海洋环流以及近期的群体扩张可能是造成中国近海银鲳群体在线粒体COⅠ基因序列上存在较高的遗传同质性的原因。  相似文献   

20.
The brown anole, Anolis sagrei, is one of the most widespread and successful colonisers of the diverse Anolis genus, which comprises c. 400 species occurring naturally in Central and South America and the Caribbean. Based on extensive between and within population sampling from a previously published study (334 mitochondrial DNA sequences) and sampling for this study (37 mtDNA sequences), we reconstruct a phylogeny and produce a haplotype network to assign a recently introduced population in St Vincent, Lesser Antilles to its geographic origin. A single haplotype was present in the St Vincent population, which was identical to a haplotype from Tampa, FL. We show that genetic diversity within native range populations, combined with low frequencies of introduced haplotypes in native ranges, may impair attempts to identify source populations, even despite intensive sampling effort. The absence of mtDNA haplotype diversity suggests a significant genetic founder effect within the St Vincent population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号