首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that high concentrations of methionine (> 1 mM) inhibited aggregation and fruiting body formation in Myxococcus xanthus (E. Rosenberg, D. Filer, D. Zafriti, and S. H. Kindler, J. Bacteriol. 115: 29-34, 1973, and J. M. Campos and D. R. Zusman, Proc. Natl. Acad. Sci. USA 72:518-522, 1975). However, the mechanism for the inhibition was unclear. In this study, we found that high levels of methionine inhibited the biosynthesis of S-adenosylmethionine (SAM) and that reduced intracellular levels of SAM are correlated with defective chemotactic movements and reduced developmental gene expression. In addition, we found that methionine analogs and high concentrations of amino acids which are known to affect SAM synthesis in other bacteria, such as threonine, lysine, and isoleucine, also caused reduced cellular levels of SAM and blocked fruiting body formation in M. xanthus. These results indicate that SAM is required for development of M. xanthus and the inhibitory effect of methionine on development results, at least in part, from its blocking of the biosynthesis of SAM.  相似文献   

2.
Mutants of Myxococcus xanthus dsp defective in fibril binding.   总被引:3,自引:1,他引:2       下载免费PDF全文
The dsp mutant of Myxococcus xanthus lacks extracellular fibrils and as a result is unable to undergo cohesion, group motility, or development (J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5765-5770, 1983; J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5771-5777, 1983; R. M. Behmlander and M. Dworkin, J. Bacteriol. 173:7810-7821, 1991; L. J. Shimkets, J. Bacteriol. 166:837-841, 1986; L. J. Shimkets, J. Bacteriol. 166:842-848, 1986). However, cohesion and development can be phenotypically restored by the addition of isolated fibrils (R. M. Behmlander, Ph.D. thesis, University of Minnesota, Minneapolis, 1994; B.-Y. Chang and M. Dworkin, J. Bacteriol. 176:7190-7196, 1994). As part of our attempts to examine the interaction of fibrils and cells of M. xanthus, we have isolated a series of secondary mutants of M. xanthus dsp in which cohesion, unlike that of the parent strain, could not be rescued by the addition of isolated fibrils. Cells of M. xanthus dsp were mutagenized either by ethyl methanesulfonate or by Tn5 insertions. Mutagenized cultures were enriched by selection of those cells that could not be rescued, i.e., that failed to cohere in the presence of isolated fibrils. Seven mutants of M. xanthus dsp, designated fbd mutants, were isolated from 6,983 colonies; these represent putative fibril receptor-minus mutants. The fbd mutants, like the parent dsp mutant, still lacked fibrils, but displayed a number of unexpected properties. They regained group motility and the ability to aggregate but not the ability to form mature fruiting bodies. In addition, they partially regained the ability to form myxospores. The fbd mutant was backcrossed into the dsp mutant by Mx4 transduction. Three independently isolated transconjugants showed essentially the same properties as the fbd mutants--loss of fibril rescue of cohesion, partial restoration of myxospore morphogenesis, and restoration of group motility. These results suggest that the physical presence of fibrils is not necessary for group motility, myxospore formation, or the early aggregative stage of development. We propose, however, that the perception of fibril binding is required for normal social behavior and development. The dsp fbd mutants (from here on referred to as fbd mutants) open the possibility of isolating and characterizing a putative fibril receptor gene.  相似文献   

3.
Myxococcus xanthus exhibits many tactic movements that require the frz signal transduction system, such as colony swarming and cellular aggregation during fruiting body formation. Previously we demonstrated that the Frz proteins control the chemotactic movements of M. xanthus (W. Shi, T. Köhler, and D. R. Zusman, Mol. Microbiol. 9:601-611, 1993). However it was unclear from that study how chemotaxis might be achieved at the cellular level. In this study, we showed that M. xanthus cells not only modulate the reversal frequency of cell movement in response to repellent stimuli but also exhibit sensory adaptation in response to the continuous presence of nonsaturating repellent stimuli. The sensory adaptation behavior requires FrzF (a putative methyltransferase) and is correlated with the methylation-demethylation of FrzCD, a methyl-accepting chemotaxis protein. These results indicate that negative chemotaxis in M. xanthus is achieved by chemokinesis plus sensory adaptation in a manner analogous to that of the free-swimming enteric bacteria.  相似文献   

4.
Myxococcus xanthus is a surface-motile bacterium that has adapted at least one chemosensory system to allow directed movement towards the slowly diffusible lipid phosphatidylethanolamine (PE). The Dif chemosensory pathway is remarkable because it has at least three inputs coupled to outputs that control extracellular matrix (ECM) production and lipid chemotaxis. The methyl-accepting chemotaxis protein, DifA, has two different sensor inputs that have been localized by mutagenesis. The Dif chemosensory pathway employs a novel protein that slows adaptation. Lipid chemotaxis may play important roles in the M. xanthus life cycle where prey-specific and development-specific attractants have been identified. Lipid chemotaxis may also be an important mechanism for locating nutrients by lung pathogens such as Pseudomonas aeruginosa.  相似文献   

5.
The Nitella-based in vitro motility assay developed by Sheetz and Spudich (Sheetz, M.P., and Spudich, J. A. (1983) Nature 303, 31-35) is a quantitative assay for measuring the velocity of myosin-coated beads over an organized substratum of actin. We have used this assay to analyze the effect of phosphorylation of various sites on the 20,000-Da light chain of smooth muscle and cytoplasmic myosins. Phosphorylation by myosin light chain kinase at serine 19 on the 20,000-Da light chain subunit of smooth muscle myosin from turkey gizzard, bovine trachea and aorta, and of cytoplasmic myosin from human platelets was required for bead movement. The individual phosphorylated myosin-coated beads moved at characteristic rates under the same conditions (turkey gizzard myosin, 0.2 micron/s; aorta or trachea myosin, 0.12 micron/s; and platelet myosin, 0.04 micron/s; in contrast, rabbit skeletal muscle myosin, 2 micron/s). Myosin light chain kinase can also phosphorylate threonine 18 in addition to serine 19, and this phosphorylation resulted in an increase in the actin-activated MgATPase activity (Ikebe, M., and Hartshorne, D.J. (1985) J. Biol. Chem. 260, 10027-10031). Phosphorylation at this site had no effect on the velocity of smooth muscle myosin-coated beads. Protein kinase C (Ca2+/phospholipid-dependent enzyme) can also phosphorylate two to three sites on the 20,000-Da light chain, and this phosphorylation alone did not result in the movement of myosin-coated beads. When myosin that had been previously phosphorylated by myosin light chain kinase at serine 19 was also phosphorylated by protein kinase C, myosin-coated beads moved at the same velocity as beads coated with myosin phosphorylated by myosin light chain kinase alone. Tropomyosin binding to actin also had an activating effect on the actin-activated MgATPase activity through an effect on the Vmax and also resulted in an increase in the velocity of myosin-coated beads.  相似文献   

6.
Gliding motility of Myxococcus xanthus is governed by both the adventurous (A) and the social (S) motility gene systems. The presence of pili has previously been shown to be correlated with a genetically intact S-motility system (D. Kaiser, Proc. Natl. Acad. Sci. USA 76:5952-5956, 1979). The purpose of the present work was to study the direct effect of mechanical removal of pill on the social motility of M. xanthus. Depiliation resulted in (i) a loss of streaming motility of A- S+ mutants, i.e., strains which are able to move by virtue of the S-motility system only, (ii) no effect on motility in A+ S- mutants, i.e., strains capable of movement by the A-motility system only, and (iii) a retardation of streaming speed in the wild-type strain (A+ S+). Cell-cell cohesion, another characteristic of social behavior, was not affected by mechanical removal of pill. The observation that mechanical depiliation perturbed the motility of strains which rely on the S-motility system strongly supports a role for pili in social motility of M. xanthus.  相似文献   

7.
Myxococcus xanthus is a gram-negative bacterium which, upon starvation, undergoes a spectacular developmental cycle culminating in the formation of spore-filled fruiting bodies. We recently characterized a protein serine-threonine kinase (Pkn1) that is required for normal development (J. Munoz-Dorado, S. Inouye, and M. Inouye, Cell 67:995-1006, 1991). pkn1 was cloned by polymerase chain reaction amplification with primers designed from conserved sequences in eukaryotic protein kinases. In this study, a fragment of the pkn1 gene and an oligonucleotide corresponding to another highly conserved region were employed as probes for Southern blot analyses, which indicated that there are at least 26 putative kinase genes in M. xanthus. Most of the putative kinase genes were cloned, and complete or partial sequencing of eight clones revealed that they indeed contained highly conserved sequences present in eukaryotic kinases. These results suggest that complex kinase cascades similar to those described for eukaryotes might be involved in regulation of the M. xanthus life cycle.  相似文献   

8.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

9.
The 110-kD protein-calmodulin complex (110K-CM) of the intestinal brush border serves to laterally tether microvillar actin filaments to the plasma membrane. Results from several laboratories have demonstrated that this complex shares many enzymatic and structural properties with myosin. The mechanochemical potential of purified avian 110K-CM was assessed using the Nitella bead motility assay (Sheetz, M. P., and J. A. Spudich. 1983. Nature (Lond.). 303:31-35). Under low Ca2+ conditions, 110K-CM-coated beads bound to actin cables, but no movement was observed. Using EGTA/calcium buffers (approximately 5-10 microM free Ca2+) movement of 110K-CM-coated beads along actin cables (average rate of approximately 8 nm/s) was observed. The movement was in the same direction as that for beads coated with skeletal muscle myosin. The motile preparations of 110K-CM were shown to be free of detectable contamination by conventional brush border myosin. Based on these and other observations demonstrating the myosin-like properties of 110K-CM, we propose that this complex be named "brush border myosin I."  相似文献   

10.
Burchard, Robert P. (University of Minnesota, Minneapolis), and M. Dworkin. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:1305-1313. 1966.-A bacteriophage (MX-1) infecting Myxococcus xanthus FB(t) has been isolated from cow dung. The bacteriophage particle is approximately 175 mmu long. A tail about 100 mmu in length is encased in a contractile sheath and terminates in a tail plate. The head is polyhedral with a width of about 75 mmu. The nucleic acid of the bacteriophage is deoxyribonucleic acid and has a guanine plus cytosine content of 55.5%. The bacteriophage requires 10(-3)m Ca(++) and 10(-2)m monovalent cation for optimal adsorption. Grown on vegetative cells of M. xanthus FB(t) at 30 C in 2% Casitone medium, the bacteriophage has a latent period of 120 min and a burst size of approximately 100. Host range studies indicate that three strains of M. xanthus including a morphogenetic mutant are sensitive to the bacteriophage, whereas M. fulvus, Cytophaga, Sporocytophaga myxococcoides, and a fourth strain of M. xanthus are not. Of the two cellular forms characteristic of the Myxococcus life cycle, the bacteriophage infect only the vegetative cells; they do not adsorb to microcysts. Ability to adsorb bacteriophage is lost between 65 and 75 min after initiation of the relatively synchronous conversion of vegetative cells to microcysts. The bacteriophage does not adsorb to spheroplasts. After the appearance of visible morphogenesis and before the loss of bacteriophage receptor sites, addition of bacteriophage results in the formation of microcysts which give rise to infective centers only upon germination. The possibility that the infected microcysts are harboring intact bacteriophages has been eliminated.  相似文献   

11.
The gene for a sigma factor (rpoD) was cloned from Myxococcus xanthus, a soil bacterium which differentiates to form fruiting bodies upon starvation for nutrients. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide of 708 amino acid residues (Mr = 80,391) was identified. Except for the amino-terminal sequence consisting of 100 residues, the M. xanthus sigma factor (sigma-80) showed extensive similarity with Escherichia coli sigma-70 as well as Bacillus subtilis sigma-43. In particular, the carboxy-terminal sequence of 242 residues that is known to be required for promoter recognition and core recognition showed 78 and 72% amino acid sequence identity with the E. coli and B. subtilis sigma factors, respectively. The putative RpoD protein was detected at the position of an apparent molecular weight of 86,000 by Western blot (immunoblot) analysis by using antiserum against B. subtilis sigma-43, which agreed well with the position of a vegetative sigma factor of M. xanthus previously identified by Rudd and Zusman (K. Rudd and D. R. Zusman, J. Bacteriol. 151:89-105, 1982).  相似文献   

12.
JD258, a Tn5 insertion mutant of Myxococcus xanthus, was shown to have major defects in three development-associated properties: expression of the developmentally regulated tps gene, spore formation, and production of multicellular fruiting bodies. The defects in tps gene expression and sporulation could be substantially corrected, at the phenotypic level, by mixing JD258 with wild-type cells (extracellular complementation). By this criterion, JD258 appeared to be a new member of a group of conditional developmental mutants that were previously characterized and placed in four extracellular complementation groups (A to D) based on the ability of mutants in one group to stimulate development in mutants belonging to a different group (D. C. Hagen, A. P. Bretscher, and D. Kaiser, Dev. Biol. 64:284-296, 1978). Mutants from groups A, B, C, and D all displayed extracellular complementation activity when mixed with JD258. These results, and other aspects of the phenotype of JD258, indicate that this mutant defines a fifth extracellular complementation group, group E. The M. xanthus esg locus identified by the Tn5 insertion in JD258 was cloned in Escherichia coli and used for further genetic analysis of the locus. These studies indicated that the esg locus resides within a 2.5-kb region of the M. xanthus chromosome and that the locus contains at least two genetic complementation groups. Our results are consistent with a model in which the esg locus controls the production of a previously unrecognized extracellular signal that must be transmitted between cells for the completion of M. xanthus development.  相似文献   

13.
Lipopolysaccharide is a major constituent of the cell surface of the gram-negative procaryote Myxococcus xanthus. We have purified lipopolysaccharide from M. xanthus and have shown by silver staining that the lipopolysaccharide contains a heterogeneous population of molecules which migrate as a broad low-molecular-mass band (approximately 5 kilodaltons) and as a stepladder of about 30 higher-molecular-mass bands (15- to 70-kilodalton range). The broad band consists of lipopolysaccharide molecules with just lipid A and core regions. The stepladder bands contain lipopolysaccharide molecules with lipid A, core regions, and various numbers of O-antigen units. Monoclonal antibodies generated against the cell surface of developing M. xanthus cells (J. S. Gill and M. Dworkin, Proc. Natl. Acad. Sci. USA 84:4505-4508, 1987) were used to help characterize the lipopolysaccharide molecules. Five monoclonal antibodies bound to carbohydrate epitopes on the stepladder but not to the broad band, indicating that these monoclonal antibodies recognize carbohydrates on the O antigen of the lipopolysaccharide molecules. Four of these five monoclonal antibodies bound to doublet bands in the stepladder, while the other monoclonal antibody bound to singlet bands in the stepladder. One monoclonal antibody bound to a carbohydrate epitope on both the broad band and the stepladder, indicating that it bound to the core of the lipopolysaccharide.  相似文献   

14.
Myxococcus xanthus utilizes two distinct motility systems for movement (gliding) on solid surfaces: adventurous motility (A-motility) and social motility (S-motility). Both systems are regulated by the Frz signal transduction pathway, which controls cell reversals required for directed motility and fruiting body formation. The Frz chemosensory system, unlike the Escherichia coli chemotaxis system, contains proteins with multiple response regulator domains: FrzE, a CheA-CheY hybrid protein, and FrzZ, a CheY-CheY hybrid protein. Previously, the CheY domain of FrzE was hypothesized to act as the response regulator output of the Frz system. In this study, using a genetic suppressor screen, we identified FrzZ and showed FrzZ is epistatic to FrzE, demonstrating that FrzZ is the principal output component of the pathway. We constructed M. xanthus point mutations in the phosphoaccepting aspartate residues of FrzZ and demonstrated the respective roles of these residues in group and single cell motility. We also performed in vitro assays and showed rapid phosphotransfer between the CheA domain of FrzE and each of the CheY domains of FrzZ. These experiments showed that FrzZ plays a direct role as an output of the Frz chemosensory pathway and that both CheY domains of FrzZ are functional.  相似文献   

15.
Optimal conditions for two-dimensional gel electrophoresis of total cellular proteins from Myxococcus xanthus were established. Using these conditions, we analyzed protein patterns of heat-shocked M. xanthus cells. Eighteen major spots and 15 minor spots were found to be induced by heat shock. From N-terminal sequences of 15 major spots, DnaK, GroEL, GroES, alkyl hydroperoxide reductase, aldehyde dehydrogenase, succinyl coenzyme A (CoA) synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit were identified. Three of the 18 major spots had an identical N-terminal sequence, indicating that they may be different forms of the same protein. Although a DnaK homologue, SglK, has been identified in M. xanthus (R. M. Weimer, C. Creghton, A. Stassinopoulos, P. Youderian, and P. L. Hartzell, J. Bacteriol. 180:5357-5368, 1998; Z. Yang, Y. Geng, and W. Shi, J. Bacteriol. 180:218-224, 1998), SglK was not induced by heat shock. In addition, there were seven substitutions within the N-terminal 30-residue sequence of the newly identified DnaK. This is the first report to demonstrate that succinyl CoA synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit are heat shock inducible.  相似文献   

16.
M. xanthus has a complex multicellular lifestyle including swarming, predation and development. These behaviors depend on the ability of the cells to achieve directed motility across solid surfaces. M. xanthus cells have evolved two motility systems including Type-IV pili that act as grappling hooks and a controversial engine involving mucus secretion and fixed focal adhesion sites. The necessity for cells to coordinate the motility systems and to respond rapidly to environmental cues is reflected by a complex genetic network involving at least three complete sets of chemosensory systems and eukaryotic-like signaling proteins. In this review, we discuss recent advances suggesting that motor synchronization results from spatial oscillations of motility proteins. We further propose that these dynamics are modulated by the action of multiple upstream complementary signaling systems. M. xanthus is thus an exciting emerging model system to study the intricate processes of directed cell migration.  相似文献   

17.
The Myxococcus xanthus gene coding for orotidine 5'-monophosphate (OMP) decarboxylase (EC 4.1.1.23) was cloned. The M. xanthus uraA gene efficiently complemented an Escherichia coli OMP decarboxylase mutant, permitting it to grow in the absence of uracil. Electroporation of M. xanthus with a circular plasmid carrying a selectable uraA::kan gene disruption resulted in homologous recombination at the chromosomal uraA locus. Chromosomal integration of the gene disruption plasmid created heterozygous (uraA+/uraA::kan) tandem duplications. These tandem duplications were unstable and segregated auxotrophic uraA::kan daughters at frequencies of 2 x 10(-4) to 8 x 10(-4) per viable cell. Rare uraA::kan segregants were easily obtained by selecting for resistance to the toxic analog 5-fluoroorotic acid. Our experiments suggest that the cloned uraA gene could facilitate the use of gene duplications in the genetic analysis of M. xanthus development. The uraA mutants could utilize uracil, uridine, or uridine 5'-phosphate for growth, indicating that M. xanthus has pyrimidine salvage pathways. During multicellular development, uraA::kan gene disruption mutants sporulated to wild-type levels but formed smaller and more numerous aggregates than did their uraA+ parent, regardless of whether uracil was added to the medium. Pyrimidine deprivation of uraA mutants, under conditions that otherwise supported vegetative growth, failed to induce fruiting-body development or sporulation.  相似文献   

18.
Myxococcus xanthus is a gram-negative bacterium that develops in response to starvation on a solid surface. The cells assemble into multicellular aggregates in which they differentiate from rod-shaped cells into spherical, environmentally resistant spores. Previously, we have shown that the induction of beta-lactamase is associated with starvation-independent sporulation in liquid culture (K. A. O'Connor and D. R. Zusman, Mol. Microbiol. 24:839-850, 1997). In this paper, we show that the chromosomally encoded beta-lactamase of M. xanthus is autogenously induced during development. The specific activity of the enzyme begins to increase during aggregation, before spores are detectable. The addition of inducers of beta-lactamase in M. xanthus, such as ampicillin, D-cycloserine, and phosphomycin, accelerates the onset of aggregation and sporulation in developing populations of cells. In addition, the exogenous induction of beta-lactamase allows M. xanthus to fruit on media containing concentrations of nutrients that are normally too high to support development. We propose that the induction of beta-lactamase is an integral step in the development of M. xanthus and that this induction is likely to play a role in aggregation and in the restructuring of peptidoglycan which occurs during the differentiation of spores. In support of this hypothesis, we show that exogenous induction of beta-lactamase can rescue aggregation and sporulation of certain mutants. Fruiting body spores from a rescued mutant are indistinguishable from wild-type fruiting body spores when examined by transmission electron microscopy. These results show that the signal transduction pathway leading to the induction of beta-lactamase plays an important role in aggregation and sporulation in M. xanthus.  相似文献   

19.
Myxococcus xanthus is a gram-negative soil bacterium that initiates a complex developmental program in response to starvation. A transposon insertion (Tn5-lac omega109) mutant with developmental deficiencies was isolated and characterized in this study. A strain containing this insertion mutation in an otherwise wild-type background showed delayed developmental aggregation for about 12 h and sporulated at 1-2% of the wild-type level. Tn5-lac omega109 was found to have disrupted the M. xanthus wbgB gene, which is located 2.1 kb downstream of the M. xanthus lipopolysacharide (LPS) O-antigen biosynthesis genes wzm wzt wbgA. The deduced polypeptide sequence of WbgB shares significant similarity with bacterial glycosyltransferases including M. xanthus WbgA. The wbgB::Tn5-lac omega109 mutant was found to be defective in LPS O-antigen synthesis by immunochemical analysis. Further mutational analysis indicated that the defects of the wbgB::Tn5-lac omega109 mutant were not the result of polar effects on downstream genes. Various motility assays demonstrated that the Tn5-lac omega109 mutation affected both social (S) and adventurous (A) gliding motility of M. xanthus cells. The pleiotrophic effects of wbgB mutations indicate the importance of LPS O-antigen biosynthesis for various cellular functions in M. xanthus.  相似文献   

20.
Previously, we identified a gene (aldA) from Myxococcus xanthus, which we suggested encoded the enzyme alanine dehydrogenase on the basis of similarity to known Ald protein sequences (M. J. Ward, H. Lew, A. Treuner-Lange, and D. R. Zusman, J. Bacteriol. 180:5668-5675, 1998). In this study, we have confirmed that aldA does encode a functional alanine dehydrogenase, since it catalyzes the reversible conversion of alanine to pyruvate and ammonia. Whereas an aldA gene disruption mutation did not significantly influence the rate of growth or spreading on a rich medium, AldA was required for growth on a minimal medium containing L-alanine as the major source of carbon. Under developmental conditions, the aldA mutation caused delayed aggregation in both wild-type (DZ2) and FB (DZF1) strains. Poorly formed aggregates and reduced levels of spores were apparent in the DZ2 aldA mutant, even after prolonged development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号