首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of the estrogen receptor's affinity for DNA by estradiol   总被引:7,自引:0,他引:7  
The binding constant for estrogen receptor-DNA interaction when measured in the presence and absence of estradiol revealed a distinct difference dependent upon whether the receptor was hormone-bound or hormone-free. The binding constant of estrogen receptor-DNA interaction was determined by analysis of the exponential elution profile of the estrogen receptor from DNA-Sepharose columns using Tris buffer at a constant salt concentration. The binding constant of the hormone-bound estrogen receptor for DNA in Tris buffer, pH 7.4, containing 0.2 M KCl was 10.1 +/- 0.8 X 10(6) M-1, 5-fold higher than the value for the hormone-free estrogen receptor. Analysis of the number of ionic bonds between the estrogen receptor and DNA indicates that the hormone-free receptor establishes eight salt bridges, while the hormone-bound estrogen receptor establishes 10-13. The affinity of the hormone-bound estrogen receptor for DNA in Tris buffer at pH 7.4 in 0.2 M KCl is 10-fold greater than at pH 8.0, suggesting that ionic bonding between the receptor and DNA may involve histidine residues of the receptor. The concentration-dependence of the hormone-bound receptor's affinity for DNA emphasizes the receptor's associative state as an influence on the receptor's DNA binding characteristics. Our results demonstrate that estradiol modifies the conformation of the estrogen receptor to a state having an increased affinity for DNA.  相似文献   

2.
Estrogens, phytoestrogens and colorectal neoproliferative lesions   总被引:1,自引:0,他引:1  
Epidemiological and experimental studies suggest a protective role of estrogens against colorectal cancer. This effect seems to be mediated by their binding to estrogen receptor beta (ER-beta), one of the two estrogen receptors with high affinity for these hormones. Very recently, the demonstration of an involvement of ER-beta in the development of adenomatous polyps of the colon has also been documented, suggesting the use of selective ER-beta agonists in primary colorectal cancer prevention. Phytoestrogens are plant-derived compounds that structurally and functionally act as estrogen-agonists in mammals. They are characterized by a higher binding affinity to ER-beta as compared to estrogen receptor alpha (ER-alpha), the other estrogen receptor subtype. These biological characteristics explain why the administration of phytoestrogens does not produce the classical side effects associated to estrogen administration (cerebro- and cardio-vascular accidents, higher incidence of endometrial and breast cancer) and makes these substances ideal candidates for the prevention of colorectal cancer.  相似文献   

3.
Diethylstilbestrol (DES) and certain chemically structural derivatives and analogs, indenestrol A (IA), indenestrol B (IB), indanestrol (IN), and pseudo-DES (PD), have been used as probes to examine various estrogenic responses previously considered interrelated and obligatory to the stimulation of uterine growth. All the analogs had poor uterotropic activity in vivo which ranged from 10-200 times less than that of estradiol or DES. The poor uterotropic activity was not due to poor binding affinity for the receptor. All compounds except IN interacted with the mouse uterine estrogen receptor with high affinity (approximately Ka 1.5-2.2 X 10(10) M-1). In addition, the compounds were able to translocate similar levels of receptor to the nucleus in vivo. Nuclear retention and occupancy of the estrogen receptor by the compounds was comparable to the patterns produced by DES or estradiol. The activity of uterine tissue responses was investigated during treatment with the compounds. Only IA stimulated uterine glucose-6-phosphate dehydrogenase to significant levels similar to DES or estradiol. Uterine progesterone receptor was induced to varying degrees by all compounds; the indenestrol isomers (IA and IB) were the most active. Uterine DNA synthesis was marginally stimulated by the derivatives and analogs except for IB which showed a response increase comparable to DES or estradiol. Because of the differential stimulation, these data suggest that in uterine tissue estrogen receptor stimulates certain biochemical responses independently and not in concert. The ability of a particular response to be increased may depend on the chemical nature of the ligand receptor complex and its interaction at genomic sites.  相似文献   

4.
D F Skafar 《Biochemistry》1991,30(25):6148-6154
The studies presented here provided evidence that the calf uterine estrogen and progesterone receptors exhibit different DNA-binding properties in vitro as a result of having different dimerization constants. The affinity of the estrogen and progesterone receptors for DNA was measured by using isocratic elution from DNA-Sepharose. The hormone-free estrogen receptor had a 10-fold higher affinity for DNA than did the hormone-free progesterone receptor when measured at receptor concentrations of 6-12 nM and 180 mM KCl. No effect on DNA binding by binding progesterone to its receptor was detected. This contrasts with the increased affinity for DNA and increased number of ions released upon DNA binding exhibited by the hormone-bound estrogen receptor. Between 2 and 3 ions were released when the progesterone receptor and the diluted estrogen receptor bound DNA. These observations suggested the progesterone receptor was in the monomeric state, whereas the estrogen receptor was in the dimeric state at receptor concentrations of 6-12 nM. When the dimerization constant of the progesterone receptor was measured, the value of approximately 7 nM obtained was 20-fold higher than the value of 0.3 nM reported for the estrogen receptor. This makes it likely the two receptors exist in different forms at the same concentration in vitro. It is also suggested the predominant form of the estrogen and progesterone receptors in vivo could differ.  相似文献   

5.
The progesterone receptors from various stages of estrogen induced oviduct development, estrogen withdrawal, and secondary stimulation with estrogen were examined. The progesterone receptors were characterized for their biological function (i.e. capacity for nuclear translocation, nuclear binding, and effects on RNA polymerase II activity) as well as certain physical properties. The progesterone receptors from the undeveloped or partially developed oviducts (0 to 8 days of estrogen treatment) displayed little or no nuclear translocation and binding in vivo or in vitro. Similarly, progesterone showed little or no effect in vivo on RNA polymerase II activity at the early stages of development. As development progressed from 8 to 12 days of estrogen treatment, the above parameters rapidly increased to maximal levels and plateaued through day 23 of estrogen treatment. A marked decrease in these parameters occurred within 1 day of estrogen withdrawal. The reverse series of events occurred during secondary estrogen stimulation of 10-day-old withdrawn chicks. While the receptor concentrations increased rapidly to maximum values by 2 days of restimulation, receptor function did not return until day 4. Similarly, the effects of progesterone on RNA polymerase II activity reached maximal values by day 4. The progesterone receptor isolated from oviducts during development, estrogen withdrawal, and restimulation, displayed similar patterns of cell-free binding to chromatin and nucleoacidic protein as that observed in vivo supporting the nativeness of the in vitro binding assay. In contrast, the cell-free binding of these same progesterone receptor to pure DNA were not similar to the in vivo binding, i.e. no patterns (differences) in progesterone receptor binding were observed. These data support that protein DNA complexes and not pure DNA represent the native acceptor sites for oviduct progesterone receptor. Comparison of the progesterone receptor between the functional and nonfunctional states revealed no differences in the steroid affinity for the receptor, in the apparent pI of the species, or in the sedimentation of the receptor under high salt conditions. However, the nonfunctional receptors consistently displayed a deficiency in one of the two monomer molecular species (the B species) as determined by isoelectric focusing. These results suggest that both monomer species of progesterone receptor are required for biological activity. Interestingly, the 7S "aggregate" species of the progesterone receptor was constantly detected even when only one of the monomer species was present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Abstract

We studied the effects of temperature, ribonucleotides and sodium molybdate on the activation and DNA cellulose binding of estrogen, glucocorticoid, progesterone and androgen receptor complexes in MCF-7 cells. Using DNA cellulose binding as a measure of receptor activation, we found that ribonucleotides activated all four of these receptor complexes. Temperature also activated glucocorticoid receptor complexes efficiently but activated progesterone and androgen receptor complexes less well. Temperature did not activate estrogen receptor complexes. Sodium molybdate blocked either ATP or temperature induced activation of glucocorticoid, progesterone and androgen receptor complexes but only partially blocked estrogen activation. Sodium molybdate also prevented the formation of multiple forms of estrogen and glucocorticoid receptor complexes seen on DEAE cellulose and hydroxylapatite chromatography of crude cytosol. The mechanism by which ribonucleotide enhances and molybdate inhibits activation are discussed.  相似文献   

7.
Abstract

A series of compounds was tested for the inhibition of binding of the estradiol-receptor complex from chick oviduct to DNA. Most of the inhibitory substances were also found to elute bound receptor complex from DNA. Only a few had inhibitory properties without an eluting capacity. One of these compounds is periodate which, to our knowledge, has not been studied up to now as an inhibitor of steroid hormone receptors. Therefore, we investigated the effects of periodate on the estrogen-receptor complex in more detail and compared them to those of the two known inhibitors, molybdate and o-phenanthroline. Periodate reacts irreversibly with the non-activated estrogen receptor from chick oviduct and blocks activation. It also affects the activated form of the receptor causing an irreversible loss of its DNA binding ability. This process is termed disactivation. Molybdate is able to inhibit the temperature, as well as the salt induced activation in a reversible manner. However, it cannot disactivate the active form of the receptor. In contrast, o-phenanthroline appears to be unable to influence the activation process i.e. to react with the non-activated form of the receptor, but instead disactivates the activated receptor. The simultaneous determination of alkaline phospha-tase inhibition by some of the tested compounds did not allow to decide if a dephosphorylation step is required for the activation of the estrogen receptor.  相似文献   

8.
In this paper we describe a new surface plasmon resonance (SPR) biosensor dedicated to potential estrogenic compounds prescreening, by developing an estrogen receptor (ER) specific DNA chip. Through the covalent binding of a DNA strain wearing the estrogen response element (ERE) to an activated 6-mercapto-1-hexadecanoic acid and 11-mercapto-1-undecanol self-assembled monolayer on gold surface, the SPR biosensor allows to detect specifically, quickly, and without any labeling the binding of ER in the presence of estrogen. In parallel, we investigated the ER interaction with itself, in order to study the formation of ER dimer apparently needed to activate the gene expression through ERE interaction. For that, we engaged force spectroscopy experiments that allowed us to prove that ER needs estrogen for its dimerization. Moreover, these ER/ER intermolecular measurements enabled to propose an innovative screening tool for anti-estrogenic compounds, molecules of interest for hormono-dependent cancer therapy.  相似文献   

9.
10.
11.
12.
Linford NJ  Dorsa DM 《Steroids》2002,67(13-14):1029-1040
Estrogenic compounds have been shown to protect neurons from a variety of toxic stimuli in vitro and in vivo and depletion of estrogen at menopause has been associated with increased risk of neurodegenerative diseases. Genistein is an isoflavone soy derivative that binds to estrogen receptors with selective estrogen receptor modulator (SERM) properties. Recent FDA recommendations of soy intake for cholesterol reduction have prompted investigation into the potentially estrogenic role of dietary soy phytochemicals in the brain. In this study, we have shown that 50nM genistein significantly reduces neuronal apoptosis in an estrogen receptor-dependent manner. The importance of apoptosis in the brain has been recognized with regard to organization of the developing brain as well as degeneration in response to disease or stroke; however, the effects of estrogenic compounds on neuronal apoptosis have not been thoroughly examined. We developed a model of apoptotic toxicity in primary cortical neurons by using the endoplasmic reticulum (ER) calcium-ATPase inhibitor, thapsigargin, to test potential anti-apoptotic effects of 17beta-estradiol and genistein. Estrogen receptor beta, but not estrogen receptor alpha, was detected in our primary neuron cultures. Thapsigargin-induced apoptosis was confirmed by loss of mitochondrial function, DNA laddering, nuclear condensation and fragmentation, and caspase activation. Both 17beta-estradiol and genistein reduced the number of apoptotic neurons and reduced the number of neurons containing active caspase-3. This effect was blocked by co-addition of ICI 182780. Our results demonstrate that genistein and 17beta-estradiol have comparable anti-apoptotic properties in primary cortical neurons and that these properties are mediated through estrogen receptors.  相似文献   

13.
The steroid and the DNA bindings of the estrogen receptor of the MtTF4 tumor whose growth is inhibited by estradiol where characterized and compared to those of uterine estrogen receptors. In the tumor cytosol: E protects its binding sites against thermal denaturation, depending on the effects of sodium molybdate upon the dissociation rate of [3H]E at 20 degrees C and the ability of receptor to bind to DNA, the activation (or transformation) process, supposed to be necessary for the full action of estrogen ligand, occurs on estrogen receptor complexes and the calf thymus DNA interacts with estrogen receptor with an affinity similar to that of uterine estrogen receptor. Kinetic and equilibrium studies with 17 alpha-[3H]E both in uterus and tumor indicate that this ligand is fast-associating, fast-dissociating and that its affinity for ER is 2- to 4-fold lower than that of 17 beta-[3H]estradiol one. Competition experiments between 17 beta-[3H]estradiol and the unlabelled 17 alpha epimer reveal, in both uterus and tumor, a time-dependent decrease of the apparent potency of 17 alpha-E to inhibit the binding of [3H]E. It is concluded that the estrogen receptors are very similar in MtTF4 tumor and uterus and the diversity of the response of cell growth to E is due rather to differences at the post-receptor level.  相似文献   

14.
1,10-Phenanthroline inhibited the DNA-cellulose binding of the transformed calf uterus estrogen receptor (homodimer of 66-kDa molecules: 5 S estrogen receptor) in a temperature- and concentration-dependent manner. This result appears related to the metal-chelating property of 1,10-phenanthroline, since the inhibition was decreased by addition of Zn2+ and Cd2+, but not by Ca2+, Ba2+, or Mg2+ for which the affinity of the chelator is low. Only a slight inhibition was observed in the presence of the 1,7-phenanthroline, a nonchelating analogue. After dialysis or filtration to remove free 1,10-phenanthroline, DNA binding of the 5 S estrogen receptor was still inhibited. Conversely, the chelator was unable to release prebound 5 S estrogen receptor from DNA-cellulose. The 5 S estrogen receptor DNA binding was inhibited when 1,10-phenanthroline was present during the transformation to activated receptor of the hetero-oligomeric nontransformed 9 S estrogen receptor, in which the hormone binding subunits are associated with heat shock protein, Mr 90,000 (hsp 90) molecules. In contrast, if 1,10-phenanthroline was removed before the transformation took place, only a slight inhibition was observed. Other experiments with EDTA indicated a similar inhibition of DNA-cellulose binding by the 5 S estradiol receptor, and all metal ions chelated by this agent prevented its inhibitory effect. The results indicate that 1,10-phenanthroline inhibited the DNA binding of the transformed 5 S estradiol receptor by chelating metal ion tightly bound to the receptor, which is not accessible to the chelator when the receptor is bound to DNA or to hsp 90. Therefore, they suggest that the metal ion may play a critical role in the interaction with DNA and hsp 90 by maintaining the structural integrity of the implicated receptor domain.  相似文献   

15.
16.
A relatively inexpensive yet highly efficient and extremely rapid procedure has been developed for the isolation and purification of estrogen receptor from the goat uterine cytosol. Greater than 1 mg of purified receptor protein could be obtained from 75 g of uterine tissue within a period of <24 h, following this protocol. The procedure does not require the use of an ultracentrifuge, a cold room, or a column chromatography setup. The entire isolation procedure, which involves adsorption to and selective elution from different chromatography matrices, is carried out at the laboratory bench using beakers kept in an ice bath. Antibodies raised against this receptor cross-react with the goat uterine estrogen receptor activation factor, a DNA binding protein having no capacity to bind estradiol but which dimerizes with the nonactivated estrogen receptor, an estrogen receptor incapable of binding to DNA on its own.  相似文献   

17.
18.
The estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is an orphan member of the nuclear receptor superfamily closely related to the estrogen receptors. To explore the DNA binding characteristics, the protein-DNA interaction was studied in electrophoretic mobility shift assays (EMSAs). In vitro translated ERRgamma binds as a homodimer to direct repeats (DR) without spacing of the nuclear receptor half-site 5'-AGGTCA-3' (DR-0), to extended half-sites, and to the inverted estrogen response element. Using ERRgamma deletion constructs, binding was found to be dependent on the presence of sequences in the ligand binding domain (LBD). A far-Western analysis revealed that ERRgamma forms dimers even in the absence of DNA. Two elements, located in the hinge region and in the LBD, respectively, are necessary for DNA-independent dimerization. DNA binding of bacterial expressed ERRgamma requires additional factors present in the serum and in cellular extracts. Fusion proteins of the germ cell nuclear factor (GCNF/NR6A1) with ERRgamma showed that the characteristic feature to be stimulated by additional factors can be transferred to a heterologous protein. The stimulating activity was further characterized and its target sequence narrowed down to a small element in the hinge region.  相似文献   

19.
Perinatal exposure to the synthetic estrogen, diethylstilbestrol (DES), affects the structure of both male and female reproductive systems. Changes may also occur in the levels of steroid hormone receptors. Cytosolic and nuclear androgen and estrogen receptor levels (expressed per mg DNA) from the sex accessory glands of male BALB/c mice exposed neonatally to DES were analyzed by exchange assays. Neonatal DES exposure caused significant decreases in: (1) cytosolic androgen and cytosolic and nuclear estrogen receptor levels in the anterior prostate and (2) cytosolic estrogen receptor levels in the ventral prostate. A significant increase was seen in the cytosolic estrogen receptor levels in the seminal vesicle. Significant decreases in cytosolic protein levels occurred in all DES-exposed glands.  相似文献   

20.
Uteri and cervices were obtained from estrous rabbits (controls) and from rabbits 24 h or 7 days after a single intramuscular injection of medroxyprogesterone acetate (MPA; 2.14 mg/kg). Estrogen and progesterone receptor concentrations were measured by Scatchard analysis, cell-free DNA synthesis was measured by (3H)-TTP incorporation, and tissue sections were examined histologically. The uterine endometrium underwent marked changes in histology, including extensive infoldings of the mucosal surface, glands were continuous into crypts and secretory epithelial cells were noted. In addition, total estrogen receptor content and DNA synthesis were decreased. In contrast, there was no significant change in the histology of the endocervical epithelial-stromal complex, and total estrogen receptor remained constant. However, DNA synthesis in the endocervix was decreased. Thus we conclude that: DNA synthesis is not linked to changes in estrogen receptor in the endocervix; and differential effects of progestogen on the estrogen receptor system occur coincident with different morphological responses within two target tissues from the same animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号