首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cells infected with temperature-sensitive (ts) mutants of complementation group V of vesicular stomatitis virus (VSV) give an enhanced yield at nonpermissive temperature when co-infected or superinfected with UV-irradiated virus. Virions produced in these mixed infections are temperature sensitive and do not complement ts V45. Rescue of group V mutants is multiplicity dependent. It can occur in the presence of cycloheximide; kinetics of rescue are similar in the absence or in the presence of the drug. Rescue is due to nongenetic complementation and is interpreted as a trigger effect on maturation of a small quantity of biologically active protein V molecules provided by UV-irradiated virus. These results are comfirmed by rescue of ts V45 by UV-irradiated, defective, interferring T particles.  相似文献   

2.
3.
Noncytocidal persistent infections at 37 C of mouse L cells (Lvsv) with infective B particles of vesicular stomatitis virus (VSV) could be established only in the presence of large numbers of defective interfering (DI) particles. Under these conditions, there was a rapid spontaneous selection of temperature-sensitive (ts) virus. At 10 days there was an increase to 17.8% in the frequency of ts clones in the virus population; by 17 days this frequency had reached 85.2%, and by 63 days 100% of the clones isolated were ts at 39.5 C, the nonpermissive temperature used. All 34 of the clones isolated from the 84-day fluid had an RNA-phenotype, and 8 clones that were tested all belonged to VSV complementation group I. When tested by an interference assay, Lvsv fluids did not contain significant numbers of DI particles (less than 1 DI/PFU). Furthermore, persistent infection of L cells at 37 C could be initiated under conditions in which few, if any, DI particles were present by using low input multiplicities (10(-4) and 10(-5) of a clonal isolate of an RNA-group I mutant obtained from Lvsv cells. On the basis of these and other results, a mechanism is proposed to explain the role of ts mutants in both the establishment and maintenance of the persistently infected state.  相似文献   

4.
5.
Maturation of viral proteins in cells infected with mutants of vesicular stomatitis virus was studied by surface iodination and cell fractionation. The movement of G, M, and N proteins to the virion bud appeared to be interdependent. Mutations thought to be in G protein prevented its migration to the cell surface, allowed neither M nor N protein to become membrane bound, and blocked formation of viral particles. Mutant G protein appeared not to leave the endoplasmic reticulum at the nonpermissive temperature, but this defect was partially reversible. In cells infected with mutants that caused N protein to be degraded rapidly or prevented its assembly into nucleocapsids, M protein did not bind to membranes and G protein matured to the cell surface, but never entered structures with the density of virions. Mutations causing M protein to be degraded prevented virion formation, and G protein behaved as in cells infected by mutants in N protein. These results are consistent with a model of virion formation involving coalescence of soluble nucleocapsid and soluble M protein with G protein already in the plasma membrane.  相似文献   

6.
7.
8.
To isolate new types of vesicular stomatitis virus (VSV) mutants, a four-stage screen was developed which identifies and characterizes mutants capable of complementing the defect in the VSV temperature-sensitive mutant tsG11. Two types of mutants of VSV, Indiana serotype, have been found by using the screen; they are new temperature-sensitive mutants which are, of necessity, not in complementation group I and mutants which do not produce plaques under conditions of single infection at 31 C (the normal permissive temperature) and are, therefore, called complementation-dependent mutants. The newly isolated, temperature-sensitive mutants fall into three complementation groups, two of which are congruent with known complementation groups; the newly identified group extends to six the number of complementation groups of VSV Indiana. The nature of the complementation-dependent mutants has not been established, but one was shown to not contain a significant deletion in its nucleic acid.  相似文献   

9.
Twenty-five spontaneous temperature-stable revertants of four different temperature-sensitive (ts) M protein mutants (complementation group III: tsG31, tsG33, tsO23, and tsO89) were sequenced and tested for their ability to inhibit vesicular stomatitis virus RNA polymerase activity in vitro. Consensus sequences of the coding region of each M protein gene were determined, using total viral RNA as template. Fifteen different sequences were found among the 25 revertants; 14 differed from their ts parent by a single amino acid (one nucleotide), and 1 differed by two amino acids (two nucleotides). Amino acids were altered in various positions between residues 64 and 215, representing over 60% of the polypeptide chain. Resequencing of the Glasgow and Orsay wild types and the four ts mutants confirmed previously published differences (Y. Gopalakrishana and J. Lenard, J. Virol., 56:655-659, 1985), and one or two additional differences were found in each. The relative charges of the revertant M proteins, as determined by nonequilibrium pH gradient electrophoresis, were consistent with the deduced sequences in every case. The ability of each revertant M protein to inhibit the RNA polymerase activity of nucleocapsids prepared from its parent ts mutant was also tested. Only 13 of the 25 revertants had M protein with high (wild type-like) polymerase-inhibiting activity, while 5 had low (ts-like) activity, and 7 had intermediate activity, demonstrating that this property is not an essential concomitant of the temperature-stable phenotype. It is concluded that the high reversion frequency observed for these mutants arises from a very high incidence of pseudoreversion, i.e., many different molecular changes can repair the ts phenotype.  相似文献   

10.
11.
Mice inoculated with many temperature-sensitive (ts) vesicular stomatitis virus (VSV) mutants incur a less aggressive disease than mice infected with wild-type VSV. The normal body temperature of mice, 38 degrees C, is not a permissive temperature for replication of the temperature-sensitive VSV mutants in cell culture. To determine whether the body temperature of mice caused the alteration in disease states, a neuropeptide that induces hypothermia in rodents was injected into mice before their infection with a temperature-sensitive VSV mutant. Only 1.0 ng of the neuropeptide neurotensin, injected intracerebroventricularly, was required to lower the core temperatures of mice an average of 2.5 degrees C. A single injection of neurotensin before infection with tsG31 VSV (complementation group III) dramatically altered the course of disease. Without neurotensin only 3% of the mice infected with tsG31 VSV died, but when neurotensin was administered 24 h before the inoculation of the tsG31 VSV, 80% of the mice died. The course of disease in mice produced by infection with another temperature-sensitive VSV mutant, tsG11 VSV (complementation group I), also was altered when neurotensin was injected before inoculation of the virus. Instead of 3% of the mice dying as in a normal infection with tsG11 VSV, treatment with neurotensin before inoculation produced a rapidly fatal disease, killing 90% of the mice.  相似文献   

12.
Structural proteins of temperature-sensitive (ts) mutants of vesicular stomatitis virus, Indiana serotype, were compared with those of wild-type and revertant virions by electrophoresis on polyacrylamide gels of partial digests with Staphylococcus aureus V8 protease. Mutants of complementation groups III (tsG31 and tsG33), II (tsG22), and IV (tsG41) differed from the wild-type virion in peptide profiles of their M, NS, and N proteins, respectively. The differences were only detectable over a narrow range of enzyme-substrate ratios and were due to peptides transiently generated during incomplete digestion. Proteins of revertants to tsG31, tsG22, and tsG41 exhibited the wild-type virion peptide pattern, indicating that reversion had restored their original conformation. However, in the case of tsG22, the NS peptide profile reverted to the wild-type phenotype only partially, suggesting that a silent mutation might have taken place during either the original chemical mutagenesis or the following repeated laboratory passages. The apparent alteration in protein conformation and its restoration upon reversion of the mutants indicated that the lesions of groups III and IV were located in the M and N proteins, respectively. Moreover, for the first time, the site of mutation of group II could be positively identified as the NS protein cistron.  相似文献   

13.
The virion-associated RNA polymerase activity of vesicular stomatitis virus is inhibited by protamine at a concentration as low as 10?7M. The inhibition is reversible, appears to be at the level of initiation and competitive with respect to ATP. Histone IIA and IV are also inhibitory whereas other fractions are not. The endogenous protein kinase activity is significantly inhibited by protamine. Virion-associated RNA or DNA polymerases of several animal viruses are also inhibited by protamine.  相似文献   

14.
The complementation properties of the virus progeny released from cells mixedly infected with mutants of vesicular stomatitis virus belonging to four different complementation groups have been examined. The group IV mutant, tsW16B, was tested in combinations with three group I mutants (tsW4, tsW28, and tsG11), one group II mutant (tsG22), and one group III mutant (tsW29). Virus stocks were grown from isolated plaques appearing on the cell monolayers used to assay the mixed infection yields and tested, in a second series of mixed infections, for their ability to complement each of the two parents. It was found that the virus harvested from each one of the first series of mixed infections contained mutants of both parental types.  相似文献   

15.
16.
17.
18.
The prototype member of the complementation group II temperature-sensitive (ts) mutants of vesicular stomatitis virus, ts II 052, has been investigated. In ts II 052-infected HeLa cells at the restrictive temperature (39.5 degrees C), reduced viral RNA synthesis was observed by comparison with infections conducted at the permissive temperature (30 degrees C). It was found that for an infection conducted at 39.5 degrees C, no 38S RNA or intracytoplasmic nucleocapsids were present. For nucleocapsids isolated from ts II 052 purified virions or from ts II 052-infected cells at 30 degrees C, the RNA was sensitive to pancreatic RNase after an exposure at 39.5 degrees C in contrast to the resistance observed for wild-type virus. The nucleocapsid stability of wild-type virus when heated to 63 degrees C or submitted to varying pH was not found in nucleocapsids extracted from ts II 052 purified virions. The data suggest that for ts II 052 there is an altered relationship between the viral 38S RNA and the nucleocapsid protein(s) by comparison with wild-type virus. Such results argue for the complementation group II gene product being N protein, so that the ts defect in ts II 052 represents an altered N protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号