首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myelin associated glycoproteins (MAG) are integral plasma membrane proteins which are found in oligodendrocytes and Schwann cells and are believed to mediate the axonal-glial interactions of myelination. In this paper we demonstrate the existence in central nervous system myelin of two MAG polypeptides with Mrs of 67,000 and 72,000 that we have designated small MAG (S-MAG) and large MAG (L-MAG), respectively. The complete amino acid sequence of L-MAG and a partial amino acid sequence of S-MAG have been deduced from the nucleotide sequences of corresponding cDNA clones isolated from a lambda gt11 rat brain expression library. Based on their amino acid sequences, we predict that both proteins have an identical membrane spanning segment and a large extracellular domain. The putative extracellular region contains an Arg-Gly-Asp sequence that may be involved in the interaction of these proteins with the axon. The extracellular portion of L-MAG also contains five segments of internal homology that resemble immunoglobulin domains, and are strikingly homologous to similar domains of the neural cell adhesion molecule and other members of the immunoglobulin gene superfamily. In addition, the two MAG proteins differ in the extent of their cytoplasmically disposed segments and appear to be the products of alternatively spliced mRNAs. Of considerable interest is the finding that the cytoplasmic domain of L-MAG, but not of S-MAG, contains an amino acid sequence that resembles the autophosphorylation site of the epidermal growth factor receptor.  相似文献   

2.
The myelin-associated glycoprotein (MAG) is a transmembrane protein of the immunoglobulin superfamily existing as two isoforms (L-MAG and S-MAG) that are differentially expressed by myelinating glial cells of the central and peripheral nervous systems, where MAG represents 1 and 0.1% of the total myelin proteins, respectively. The polypeptide chains of the two isoforms differ only by the carboxy terminus of their respective cytoplasmic domains, which most probably determine the isoform-specific functions. Here, we describe the expression of the L-MAG cytoplasmic domain as a GST fusion protein. The recombinant protein was used to raise polyclonal antibodies against the L-MAG-specific carboxy terminus and against the region of the MAG cytoplasmic domain common to both S-MAG and L-MAG. These antibodies, which function in dot blotting, Western blotting, and immunoprecipitation, were used to immunopurify native MAG from both rat brain and peripheral nerves in quantities and purity sufficient for the realization of most biochemical and functional studies. The antibodies and the recombinant and native MAG proteins provide much needed tools for the study of the common and isoform-specific properties and functions of L-MAG and S-MAG.  相似文献   

3.
4.
Endocytic depletion of L-MAG from CNS myelin in quaking mice   总被引:1,自引:0,他引:1       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1811-1820
  相似文献   

5.
The alternative splicing of myelin-associated glycoprotein (MAG) mRNA generates two isoforms that harbor distinct potential phosphorylation sites in their cytoplasmic tails. Here we characterize the in vivo phosphorylation of MAG isoforms in NIH 3T3 cells transfected with the cDNAs encoding the two isoforms of MAG. Our results demonstrate that the longer isoform, L-MAG, is phosphorylated constitutively mainly on serine, but also on threonine and tyrosine residues. This phosphorylation is subject to change by 12-O-tetradecanoylphorbol 13-acetate (TPA) and ammonium vanadate, but not by dibutyryl-cyclic AMP. The shorter isoform, S-MAG, is constitutively phosphorylated only on serine residues. While TPA and dibutyryl-cyclic AMP have no detectable effect, ammonium vanadate induces tyrosine and threonine phosphorylation in S-MAG. 32P labeling of v-src-transformed NIH 3T3 cells that express L-MAG also show that L-MAG is likely to be an in vivo substrate for pp60v-src tyrosine kinase activity. These results demonstrate that both MAG isoforms are phosphorylated in a heterologous cell system and that this phosphorylation is subject to pharmacological manipulation.  相似文献   

6.
Two polypeptide isoforms of myelin-associated glycoprotein (MAG) with molecular masses of 72 and 67 kDa are produced by alternative splicing of the exon 12 portion. Our previous work has demonstrated that in the quaking mouse brain this alternative splicing is lacking and that the mRNA coding the large MAG isoform (L-MAG) is scarcely expressed, whereas that of small MAG isoform (S-MAG) is overexpressed. In the present study, we prepared antisera specific to the S-MAG and L-MAG amino acid residues, respectively. Immunoblots showed that the L-MAG band was scarcely detectable in the quaking mouse brain, whereas the S-MAG band had an apparently higher molecular mass than in the normal control. Our immunohistochemical study also showed that L-MAG was scarcely stained in the quaking mouse brain. These results seemed to reflect a reduction in content of L-MAG mRNA and abnormal glycosylation in the quaking mouse brain.  相似文献   

7.
We have generated stable Chinese hamster ovary (CHO) cell transfectants expressing either CD58 or CD59 or both molecules to compare their respective parts played in T cell adhesion and activation. Using a rosetting assay, we have shown the following: 1) The CD59 molecule was directly responsible for adhesive interaction between human T cells and CD59+ CHO transfectants. CD59-mediated adhesion induced 12 +/- 2% (mean +/- SEM, n = 25) of rosettes. 2) The CD58 molecule expressed on CD58+ CHO transfectants induced 29 +/- 6% (mean +/- SEM, n = 8) of rosettes. 3) Double transfected CD58+CD59+ CHO cells formed up to 80% of rosettes, largely exceeding the sum of rosettes formed by single transfectants, thus disclosing at least an additive and possibly a synergic action of both molecules in mediating adhesion to T cells. Culturing purified human T cells in the presence of fixed CHO transfectants and submitogenic doses of PHA + rIL-1 alpha showed that: 1) CD59+ CHO transfectants induced sevenfold T cell proliferation enhancement, demonstrating the direct involvement of the CD59 molecule in T cell activation; 2) CD58+ CHO transfectants induced 20-fold T cell proliferation increase; and 3) the enhancement induced by CD58+CD59+ CHO cells was more than 40-fold. These results suggest that CD58 and CD59 molecules present on the surface of accessory cells might exert synergic function in T cell adhesive interactions and in the stimulation of T cell activation.  相似文献   

8.
Myelin-associated glycoprotein (MAG) was radioactively labelled with 32P both in intact brain and in myelin membrane preparations. Chemical deglycosylation of the phosphorylated products revealed that only one of the MAG isoforms (L-MAG) is labelled in vitro. Furthermore, the phosphorylation events in vivo and in vitro are confined to the cytoplasmic portion of the L-MAG isoform. Tryptic mapping of L-MAG labelled both in vivo and in vitro revealed that the majority of the sites phosphorylated in intact brain are also phosphorylated in myelin membrane preparations; however, the extent of phosphorylation at individual sites is variable. The results demonstrate that partially purified myelin membrane preparations can be used to study the enzymes responsible for MAG phosphorylation and dephosphorylation events in vivo.  相似文献   

9.
10.
The carboxyl terminus-truncated cadherin (nonfunctional cadherin) has no cell adhesion activity probably because of its failure to associate with cytoplasmic proteins called alpha and beta catenin. To rescue this nonfunctional cadherin as adhesion molecules, we constructed three cDNAs for fusion proteins between nonfunctional E-cadherin and alpha catenin, nE alpha, nE alpha N, and nE alpha C, where the intact, amino- terminal and carboxy-terminal half of alpha catenin, respectively, were directly linked to the nonfunctional E-cadherin, and introduced them into mouse L cells. The subcellular distribution and cell adhesion activity of nE alpha and nE alpha C molecules was similar to those of intact E-cadherin transfectants: they bound to cytoskeletons, were concentrated at cell-cell adhesion sites and showed strong cell adhesion activity. nE alpha N molecules, which also bound to cytoskeletons, showed very poor cell adhesion activity. Taken together, we conclude that in the formation of the cadherin-catenin complex, the mechanical association of alpha catenin, especially its carboxy- terminal half, with E-cadherin is a key step for the cadherin-mediated cell adhesion. Close comparison revealed that the behavior of nE alpha molecules during cytokinesis was quite different from that of intact E- cadherin, and that the intercellular motility, i.e., the cell movement in a confluent sheet, was significantly suppressed in nE alpha transfectants although it was facilitated in E-cadherin transfectants. Considering that nE alpha was not associated with endogenous beta catenin in transfectants, the difference in the nature of cell adhesion between nE alpha and intact E-cadherin transfectants may be explained by the function of beta catenin. The possible functions of beta catenin are discussed with a special reference to its role as a negative regulator for the cadherin-mediated cell adhesion system.  相似文献   

11.
MUC16/CA125 is over-expressed in human epithelial tumors including ovarian, breast and some other carcinomas. The purpose of this study is to investigate how cell surface MUC16 is functionally involved in tumor progression, with a special focus on the role of its cytoplasmic tail. Forced expression of C-terminal MUC16 fragment (MUC16C) in epithelial cancer cells increased cell migration. We found that MUC16C directly interacted with Src family kinases (SFKs). Notably, localizations of E-cadherin and β-catenin at the cell–cell contacts were more diffuse in MUC16C transfectants compared with mock transfectants. Furthermore, MUC16C transfectants showed reduced Ca2+-dependent cell–cell adhesion, but the treatment of cells with PP2, a SFKs inhibitor, restored this. Because cell surface MUC16 is also associated with the E-cadherin/β-catenin complex, the over-expression of MUC16 and its interaction with SFKs may enhance SFKs-induced deregulation of E-cadherin. Thus, our results suggest a role for cell surface MUC16 in cell–cell adhesion of epithelial cancer cells.  相似文献   

12.
Abstract: Biochemical and cellular properties of three immortalized Schwann cell lines expressing different levels of the myelin-associated glycoprotein (MAG) were compared. The S16 line generated by repetitive passaging was described previously and expresses a level of MAG comparable to that in adult sciatic nerve. The S42 line was generated independently by the same procedure, divides more slowly than the S16 line, and expresses an even higher level of MAG. The S16Y line arose spontaneously from a passage of the S16 cells, divides much more rapidly, and does not express MAG. The levels of MAG expression in the three lines are inversely related to their rates of proliferation, and MAG mRNA levels parallel the amounts of MAG. The S16 and S42 lines consist mainly of flat cells at low density and develop many processes at high density, whereas most of the S16Y cells are spindle-shaped, resembling primary Schwann cells in appearance. Surface immunostaining with the O4 antibody was positive for the S16 and S42 cells and negative for the S16Y cells, but all three lines were negative for surface staining with the O1 antibody. The overall protein compositions of the three lines are very similar, but the S16 and S42 cells express larger amounts of several glycoproteins than the S16Y cells, including the adhesion proteins, neural cell adhesion molecule, L1, and laminin. S16 and S42 cells (but not S16Y cells) also express P0 glycoprotein, galactocerebroside, and sulfatide, but, unlike MAG, these other myelin-related components were present at much lower levels than in adult nerve. Myelin basic protein and proteolipid protein were not detected in any of the lines, although all three lines contained proteolipid protein mRNA. 2′,3′-Cyclic nucleotide 3′-phosphodiesterase and glial fibrillary acidic protein were present in all three lines. Conditions have not yet been found in which any of the lines will myelinate dorsal root ganglion neurons in vitro, but the S16 and S42 cells differ from the S16Y cells by clustering around neurons after 1 week in coculture. In many respects, the S16 and S42 cells biochemically resemble Schwann cells at an early stage in their preparation to myelinate and should be useful for investigating the cell biology of MAG and other myelin-related components.  相似文献   

13.
The neural cell adhesion molecule (N-CAM/CD56) is a member of the Ig supergene family that has been shown to mediate homophilic binding. Several isoforms of N-CAM have been identified that are expressed preferentially in different tissues and stages of embryonic development. To examine the primary structure of N-CAM expressed in leukocytes, N-CAM cDNA were generated by polymerase chain reaction from RNA isolated from normal human NK cells and the KG1a hematopoietic leukemia cell line. The sequence of leukocyte-derived N-CAM cDNA was essentially identical with N-CAM cDNA from human neuroblastoma cells that encode the 140-kDa isoform of N-CAM. Inasmuch as N-CAM is preferentially expressed on human NK cells and a subset of T lymphocytes that mediate MHC-unrestricted cell-mediated cytotoxicity, we examined the potential role of N-CAM in cell-mediated cytotoxicity and heterotypic lymphocyte-tumor cell adhesion. N-CAM loss mutants were established from the human N-CAM+ KG1a leukemia cell line, and N-CAM cDNA was transfected into a human colon carcinoma cell line and murine L cells. Using this panel of mutants and transfectants, it was determined that expression of N-CAM on these target cells does not affect susceptibility to resting or IL-2-activated NK cell-mediated cytotoxicity. Moreover, expression of N-CAM in these transfectants failed to induce homotypic or heterotypic cellular adhesion. Collectively, these studies indicate that homophilic N-CAM interactions probably do not mediate a major role in the cytolytic interaction between NK cells and N-CAM+ tumor cell targets.  相似文献   

14.
A nonmetastatic human mammary epithelial cell line (MCF-10A) was engineered to overproduce protein kinase Calpha (PKCalpha) so as to investigate a role for this isoform in the metastatic phenotype. PKCalpha transfectants (clone 26alpha) expressed an 8-fold higher level of PKCalpha protein without compensatory alterations in other isoforms. Clone 26alpha proliferated slowly (accumulating in G1 of the cell cycle) but exhibited pronounced increases in motility and adhesion. Elevated expression of cell cycle inhibitor p27 and focal adhesion proteins was observed, whereas E-cadherin expression decreased to undetectable levels. These observations were consistent with the morphology of PKCalpha transfectants (large, disaggregated, and flat, with lamellipodia and extensive actin fibers) and control cells (small, aggregated, and refractile). Treatment with PKC inhibitors or transfection of a dominant negative (dn) mutant of Rac1, but neither dn RhoA nor dn cdc42, reduced the motility of clone 26alpha, implicating PKCalpha catalytic activity and endogenous Rac1, respectively, in the PKCalpha-induced phenotype. Overall, PKCalpha overexpression suppresses proliferation while endowing MCF-10A cells with properties consistent with the metastatic phenotype.  相似文献   

15.
《The Journal of cell biology》1987,105(4):1893-1899
A monoclonal antibody to the myelin-associated glycoprotein (MAG) was prepared and characterized to probe for the involvement of MAG in cell surface interactions among neural cells in vitro. The antibody reacts specifically with oligodendrocyte cell surface and myelin-rich brain regions as expected from previous investigations. Not all O4 antigen- positive oligodendrocytes express MAG in vitro. Fab fragments of the antibody interfere with neuron to oligodendrocyte and oligodendrocyte to oligodendrocyte adhesion, but not with oligodendrocyte to astrocyte adhesion. MAG-containing liposomes bind to the cell surfaces of the appropriate target cells by a mechanism that is specifically inhibitable by Fab fragments of monoclonal MAG antibodies, demonstrating that MAG is a neural cell adhesion molecule.  相似文献   

16.
Abstract: Myelin-associated glycoprotein (MAG) and Schwann cell myelin protein (SMP) are highly glycosylated members of a newly defined family of cell adhesion molecules belonging to the immunoglobulin superfamily that recognize terminal sialic acid residues on N- and O-linked oligosaccharides. The importance of the N-linked oligosaccharides on MAG were determined by removal of the eight predicted carbohydrate addition sites by site-directed mutagenesis. The results suggest that all eight N-linked glycosylation sites are utilized in COS cells. N-linked glycosylation does not appear to be required for sialic acid-dependent MAG binding to erythrocytes. However, N-linked glycosylation of MAG does play a role in the proper folding of MAG. It was also shown that sialylation in the host cell expressing MAG and SMP could inhibit binding to erythrocytes. The degree to which SMP and MAG erythrocyte binding was affected by sialylation in the host cell was dependent on (a) the level at which MAG was expressed on the surface on the host cell and (b) the presence of MAG ligands on the host cell. The data suggest that cis -ligands on the host cell compete with trans -ligands on the target cell for the binding site(s) on MAG.  相似文献   

17.
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5′ splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.  相似文献   

18.
G C Owens  R P Bunge 《Neuron》1991,7(4):565-575
To elucidate the role of myelin-associated glycoprotein (MAG) in the axon-Schwann cell interaction leading to myelination, neonatal rodent Schwann cells were infected in vitro with a recombinant retrovirus expressing MAG antisense RNA or MAG sense RNA. Stably infected Schwann cells and uninfected cells were then cocultured with purified sensory neurons under conditions permitting extensive myelination in vitro. A proportion of the Schwann cells infected with the MAG antisense virus did not myelinate axons and expressed lower levels of MAG than control myelinating Schwann cells, as measured by immunofluorescence. Electron microscopy revealed that the affected cells failed to segregate large axons and initiate a myelin spiral despite having formed a basal lamina, which normally triggers Schwann cell differentiation. Cells infected with the MAG sense virus formed normal compact myelin. These observations strongly suggest that MAG is the critical Schwann cell component induced by neuronal interaction that initiates peripheral myelination.  相似文献   

19.
For many years evidence has accumulated that sialic acids function in cellular interactions either by masking or as a recognition site. However, receptors or adhesion molecules mediating such functions between eukaryotic cells were unknown until about 5 years ago, when it was found that the members of the Selectin family mediate adhesion of leukocytes to specific endothelia through binding to sialylated glycans like sialyl Lewisx. More recently, the Sialoadhesin family of sialic acid-dependent adhesion molecules was defined within the superfamily of immunoglobulin-like molecules. So far, it has been shown that sialoadhesin (Sn), CD22, CD33, the myelin-associated glycoprotein (MAG) and the Schwann cell myelin protein (SMP) belong to this family. In contrast to the Selectins, these proteins are associated with diverse biological processes, i.e. hemopoiesis, neuronal development and immunity. In this review their properties, carbohydrate specificities and potential biological functions are discussed. Finally, we provide perspectives with respect to the nature of ligands, implications of sialic acid modifications and future research.Abbreviations IgSF immunoglobulin superfamily - MAG myelin-associated glycoprotein - Sia sialic acid - SMP Schwann cell myelin protein - Sn sialoadhesin  相似文献   

20.
The Na+/Ca2+ exchanger of calf heart sarcolemma has been identified in solubilized membrane preparations with the help of specific antibodies as a molecule of approximate Mr of 30 KDa. The conclusion supports the previous proposal by Soldati et al. (J. Biol. Chem. 260, 13321-13327, 1985) that the exchanger is a molecule of Mr about 33 KDa. Antibodies (IgG) were raised in rabbits by injecting proteins electroeluted from different regions of preparative SDS gels of solubilized heart sarcolemma. After purification the IgG against the proteins of the 30 KDa region recognized the 33 KDa component but also proteins of Mr about 70 and 140 KDa. Conversely, antibodies against the 140 KDa protein(s) also recognized the 70 and the 33 KDa proteins. However, if the solubilized sarcolemma extract was treated with DTT prior to the transfer to nitrocellulose the 140 KDa protein was not seen. Both the antibodies against the 30 KDa and those against the 140 KDa proteins inhibited the Na+/Ca2+ exchange activity of sarcolemma vesicles. It is proposed that the basic unit of the Na+/Ca2+ exchanger of heart sarcolemma is a monomer of Mr about 33 KDa, the functionally active exchanger being a tetramer in which the four 33 KDa subunits are held together by disulfide bonds. In the monomer-tetramer transition an intermediate dimeric state of Mr 70 KDa is also formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号