首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Recent evidence has accumulated showing that activation of PLC-catalysed hydrolysis of phosphatidylcholine (PC-PLC) is a critical step in mitogenic signal transduction both in fibroblasts and in oocytes from Xenopus laevis. The products of ras genes activate PC-PLC, bind guanine nucleotides, have intrinsic GTPase activity, and are regulated by a GTPase-activating protein (GAP). It has been suggested that, in addition to its regulatory properties, GAP may also be necessary for ras function as a downstream effector molecule. In this study, evidence is presented that strongly suggests that the functional interaction between ras p21 and GAP is sufficient and necessary for activation of maturation promoting factor (MPF) H1-kinase activity in oocytes, and that PC hydrolysis is critically involved in this mechanism. Therefore, we identify GAP as a further step required for signalling through PC-PLC, and necessary for the control of oocyte maturation in response to ras p21/insulin but not to progesterone.  相似文献   

2.
Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a large variety of cellular genes. However, the mechanism whereby this nuclear factor is activated remains to be determined. In this report, we present evidence that in oocytes from Xenopus laevis, (i) ras p21- and phospholipase C (PLC)-mediated phosphatidylcholine (PC) hydrolysis activates NF-kappa B and (ii) protein kinase C zeta subspecies is involved in the activation of NF-kappa B in response to insulin/ras p21/PC-PLC. Thus, the microinjection of either ras p21 or PC-PLC, or the exposure of oocytes to insulin, promotes a significant translocation to the nucleus of an NF-kappa B-like activity. This effect is not observed when oocytes are incubated with phorbol myristate acetate or progesterone, both of which utilize a ras p21-independent pathway for oocyte activation. These data strongly suggest a critical role of the insulin/ras p21/PC-PLC/protein kinase C zeta pathway in the control of NF-kappa B activation.  相似文献   

3.
Recent studies have demonstrated the activation of phospholipase C-mediated hydrolysis of phosphatidylcholine both by growth factors and by the product of ras oncogene, ras p21. Also, evidence has been presented indicating that the stimulation of this phospholipid-degradative pathway is sufficient to activate mitogenesis in fibroblasts. In Xenopus laevis oocytes, microinjection of transforming ras p21 is a potent inducer of maturation, whereas microinjection of a neutralizing anti-ras p21 antibody specifically inhibits maturation induced by insulin but not by progesterone. The results presented here demonstrated that microinjection of phosphatidylcholine-hydrolyzing phospholipase C is sufficient to induce maturation of Xenopus laevis oocytes. Furthermore, microinjection of a neutralizing anti-phosphatidylcholine-hydrolyzing phospholipase C specifically blocks the maturation program induced by ras p21/insulin but not by progesterone.  相似文献   

4.
Mitogen-activated protein (MAP) kinase is a serine/threonine kinase whose function is thought to be essential for the transduction of mitogenic signals. MAP kinase is activated by phosphorylation induced by a variety of extracellular stimuli, and its direct upstream activator has been identified. Using amphibian and mammalian systems, we show here that ras can activate MAP kinase and its activator. Injection of v-Ha-ras p21 into Xenopus immature oocytes activated both MAP kinase and maturation-promoting factor (MPF) activities. The activation of MAP kinase preceded that of MPF, demonstrating that ras activates MAP kinase in an MPF-independent pathway. Moreover, we found that the MAP kinase activator is also activated in ras-injected oocytes. Activation of MAP kinase and its activator occurred also when the v-Ki-ras gene was conditionally induced in rat fibroblastic 3Y1 cells. Furthermore, we observed that ras activated MAP kinase and its activator in a cell-free system prepared from Xenopus oocytes. Using an antibody against the Xenopus 45-kDa MAP kinase activator, we demonstrated that the 45-kDa activator molecule was activated by ras. These findings suggest that the MAP kinase activator/MAP kinase system may be the downstream components of ras signal transduction pathways.  相似文献   

5.
Recent evidence suggests the involvement of phosphatidylcholine (PC) hydrolysis both in the control of normal cell growth and in transformation. We show here that the simple exogenous addition of Bacillus cereus PC-hydrolyzing phospholipase C (PC-PLC) is sufficient to elicit a potent mitogenic response in Swiss 3T3 fibroblasts by a mechanism that is independent of protein kinase C. Our results on the additivity and synergism between B. cereus PC-PLC, PDGF, and insulin in the mitogenic response indicate that this novel phospholipid degradative pathway may be important in the mitogenic signaling cascade activated by PDGF.  相似文献   

6.
We have investigated the relationship between hydrolysis of phosphatidylcholine (PC) and activation of the Raf-1 protein kinase in Ras-mediated transduction of mitogenic signals. As previously reported, cotransfection of a PC-specific phospholipase C (PC-PLC) expression plasmid bypassed the block to cell proliferation resulting from expression of the dominant inhibitory mutant Ras N-17. In contrast, PC-PLC failed to bypass the inhibitory effect of dominant negative Raf mutants, suggesting that PC-PLC functions downstream of Ras but upstream of Raf. Consistent with this hypothesis, treatment of quiescent cells with exogenous PC-PLC induced Raf activation, even when normal Ras function was blocked by Ras N-17 expression. Further, activation of Raf in response to mitogenic growth factors was blocked by inhibition of endogenous PC-PLC. Taken together, these results indicate that hydrolysis of PC mediates Raf activation in response to mitogenic growth factors.  相似文献   

7.
We used a dominant inhibitory mutation of c-Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21(Asn-17)Ha-ras] to investigate ras function in mitogenic signal transduction. An NIH 3T3 cell line [NIH(M17)] was isolated that displayed inducible expression of the mutant Ha-ras gene (Ha-ras Asn-17) via the mouse mammary tumor virus long terminal repeat and was growth inhibited by dexamethasone. The effect of dexamethasone induction on response of quiescent NIH(M17) cells to mitogens was then analyzed. Stimulation of DNA synthesis by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) was completely blocked by p21(Asn-17) expression, and stimulation by serum, fibroblast growth factor, and platelet-derived growth factor was partially inhibited. However, the induction of fos, jun, and myc by EGF and TPA was not significantly inhibited in this cell line. An effect of p21(Asn-17) on fos induction was, however, demonstrated in transient expression assays in which quiescent NIH 3T3 cells were cotransfected with a fos-cat receptor plasmid plus a Ha-ras Asn-17 expression vector. In this assay, p21(Asn-17) inhibited chloramphenicol acetyltransferase expression induced by EGF and other growth factors. In contrast to its effect on DNA synthesis, however, Ha-ras Asn-17 expression did not inhibit fos-cat expression induced by TPA. Conversely, downregulation of protein kinase C did not inhibit fos-cat induction by activated ras or other oncogenes. These results suggest that ras proteins are involved in at least two parallel mitogenic signal transduction pathways, one of which is independent of protein kinase C. Although either pathway alone appears to be sufficient to induce fos, both appear to be necessary to induce the full mitogenic response.  相似文献   

8.
Using Xenopus oocytes as a model system, we investigated the possible involvement of ras proteins in the pathway leading to phosphorylation of ribosomal protein S6. Our results indicate that microinjection of oncogenic T24 H-ras protein (which contains valine at position 12) markedly stimulated S6 phosphorylation on serine residues in oocytes, whereas normal ras protein (which contains glycine at position 12) was without effect. The S6 phosphorylation activity in the cell extract from T24 ras protein-injected oocytes was increased significantly. In addition, injection of protein kinase C potentiated the induction of maturation and S6 phosphorylation by the oncogenic ras protein. A similar potentiation was detected when T24 ras protein-injected oocytes were incubated with active phorbol ester. These findings suggest that ras proteins activate the pathway linked to S6 phosphorylation and that protein kinase C has a synergistic effect on the ras-mediated pathway.  相似文献   

9.
We have used a dominant inhibitory ras mutant (Ha-ras Asn-17) to investigate the relationship of Ras proteins to hydrolysis of phosphatidylcholine (PC) in the transduction of mitogenic signals. Expression of Ha-Ras Asn-17 inhibited NIH 3T3 cell proliferation induced by polypeptide growth factors or phorbol esters. In contrast, the mitogenic activity of PC-specific phospholipase C (PC-PLC) was not inhibited by Ha-Ras Asn-17 expression. Similarly, cotransfection with a cloned PC-PLC gene bypassed the block to NIH 3T3 cell proliferation resulting from expression of the inhibitory ras mutant. Hydrolysis of PC can therefore induce cell proliferation in the absence of normal Ras activity, suggesting that PC-derived second messengers may act downstream of Ras in mitogenic signal transduction. This was substantiated by the finding that Ha-Ras Asn-17 expression inhibited growth factor-stimulated hydrolysis of PC. Taken together, these results indicate that PC hydrolysis is a target of Ras during the transduction of growth factor-initiated mitogenic signals.  相似文献   

10.
Signal transduction induced by generations of second messengers from membrane phospholipids is a major regulatory mechanism in the control of cell proliferation. Indeed, oncogenic p21ras alters the intracellular levels of phospholipid metabolites in both mammalian cells and Xenopus oocytes. However, it is still controversial whether this alteration it is biologically significant. We have analyzed the ras-induced signal transduction pathway in Xenopus oocytes and have correlated its mechanism of activation with that of the three most relevant phospholipases (PLs). After microinjection, ras-p21 induces a rapid PLD activation followed by a late PLA2 activation. By contrast, phosphatidylcholine-specific PLC was not activated under similar conditions. When each of these PLs was studied for its ability to activate intracellular signalling kinases, all of them were found to activate maturation-promoting factor efficiently. However, only PLD was able to activate MAP kinase and S6 kinase II, a similar pattern to that induced by p21ras proteins. Thus, the comparison of activated enzymes after microinjection of p21ras or PLs indicated that only PLD microinjection mimetized p21ras signalling. Finally, inhibition of the endogenous PLD activity by neomycin substantially reduced the biological activity of p21ras. All these results suggest that PLD activation may constitute a relevant step in ras-induced germinal vesicle breakdown in Xenopus oocytes.  相似文献   

11.
It has been shown previously in T cells that stimulation of protein kinase C or the T cell antigen receptor leads to a rapid and persistent activation of p21ras as measured by a dramatic increase in the amount of bound GTP. These stimuli are also known to induce the expression of the T lymphocyte growth factor, interleukin-2 (IL-2), an essential growth factor for the immune system. Receptor induced activation of p21ras has been demonstrated in several cell types but involvement of protein kinase C as an upstream activator of p21ras appears to be unique to T cells. In this study we show that p21ras acts as a component of the protein kinase C and T cell antigen receptor downstream signalling pathway controlling IL-2 gene expression. In the murine T cell line EL4, constitutively active p21ras greatly potentiates the phorbol ester and T cell receptor agonist induced production of IL-2 as measured both by biological assay for the cytokine and by the use of a reporter construct. Active p21ras also partially replaces the requirement for protein kinase C activation in synergizing with a calcium ionophore to induce production of IL-2. Furthermore, using a dominant negative mutant of ras, Ha-rasN17, we show that endogenous ras function is essential for induction of IL-2 expression in response to protein kinase C or T cell receptor stimulation. Activation of ras proteins is thus a necessary but not sufficient event in the induction of IL-2 synthesis. Ras proteins are therefore pivotal signalling molecules in T cell activation.  相似文献   

12.
Microinjection of p21Ha-ras proteins into Xenopus laevis oocytes induces a rapid increase of 1,2-diacylglycerol (DAG) levels. The observed alterations in DAG levels were consistent with the ability of the protein to induce maturation, measured by germinal vesicle breakdown (GVBD). Both the increase in DAG levels and GVBD activity were dependent on the ability of the proteins to undergo membrane translocation. Alterations of DAG levels or GVBD activity did not correlate with changes in the levels of inositol phosphates. However, at minimal doses sufficient to achieve maximal biological response, a biphasic increase in the amounts of phosphocholine and CDP-choline was observed. The first burst of phosphocholine and CDP-choline preceded the increase in DAG levels. The second peak paralleled the appearance of DAG. Choline kinase activity was also increased in oocyte extracts after p21ras microinjection. These results suggest that both the synthesis and degradation of phosphatidylcholine are activated after microinjection of ras proteins into Xenopus oocytes, resulting in a net production of DAG.  相似文献   

13.
In order to evaluate the possible contribution of phospholipase D (PLD) stimulation to the mitogenic response, a screening of a variety of different compounds, some of which are known to be potent mitogens, was performed using the well characterized Chinese hamster lung fibroblast (CCL39) cell line. In wild type CCL39 cells, or derivatives expressing high levels of either the human M1 muscarinic receptor (Hm1) or the human epidermal growth factor (EGF) receptor (39M1-81 and 39ER22 clones, respectively), thrombin, a potent mitogen for all three cell types, elicited the rapid activation of PLD (t1/2 activation, 30 s). Carbachol-mediated activation of the Hm1 receptor in the 39M1-81 clone, which is not a mitogenic signal, produced a similarly rapid although greater activation of PLD. Addition of EGF to the 39ER22 clone was able to provoke both a mitogenic response and stimulate PLD, albeit a comparatively small effect. In each case, the stimulation of PLD correlated closely with the ability to stimulate inositol phospholipid breakdown and was entirely dependent on the activation of protein kinase C. Moreover, the ability of both thrombin and carbachol to stimulate PLD was found to be rapidly desensitized, with a similar time course of desensitization (t1/2 desensitization, 90 s). It has recently been reported that an increase in phospholipase C (PLC)-mediated phosphocholine (PC) hydrolysis by either addition of agonist or by extracellular addition of PC-specific PLC enzyme constitutes a mitogenic signal. In this regard, in addition to stimulation of PLD, thrombin and carbachol were both able to stimulate the activity of a phosphocholine-specific phospholipase C (PC-PLC), which did not appear to desensitize within the time course employed. By contrast, EGF was unable to elicit the stimulation of PC-PLC. Ligands such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), which bind to and activate receptors with intrinsic tyrosine kinase activity, are potent mitogens for CCL39 cells but were unable to stimulate either PLD or PC-PLC activity. Furthermore, exogenous addition of purified PC-PLC enzyme, although able to induce a strong and lasting hydrolysis of PC, was unable to produce a mitogenic signal on its own. On the basis of these results, we conclude that the activation of both PLD and PC-PLC is neither sufficient nor required to produce a mitogenic response.  相似文献   

14.
The serine/threonine kinase activity of the Raf-1 proto-oncogene product is stimulated by the activation of many tyrosine kinases, including growth factor receptors and pp60v-src. Recent studies of growth factor signal transduction pathways demonstrate that Raf-1 functions downstream of activated tyrosine kinases and p21ras and upstream of mitogen-activated protein kinase. However, coexpression of both activated tyrosine kinases and p21ras is required for maximal activation of Raf-1 in the baculovirus-Sf9 expression system. In this study, we investigated the role of tyrosine kinases and tyrosine phosphorylation in the regulation of Raf-1 activity. Using the baculovirus-Sf9 expression system, we identified Tyr-340 and Tyr-341 as the major tyrosine phosphorylation sites of Raf-1 when coexpressed with activated tyrosine kinases. Introduction of a negatively charged residue that may mimic the effect of phosphorylation at these sites activated the catalytic activity of Raf-1 and generated proteins that could transform BALB/3T3 cells and induce the meiotic maturation of Xenopus oocytes. In contrast, substitution of noncharged residues that were unable to be phosphorylated produced a protein that could not be enzymatically activated by tyrosine kinases and that could block the meiotic maturation of oocytes induced by components of the receptor tyrosine kinase pathway. These findings demonstrate that maturation of the tyrosine phosphorylation sites can dramatically alter the function of Raf-1. In addition, this is the first report that a transforming Raf-1 protein can be generated by a single amino acid substitution.  相似文献   

15.
Exoenzyme C3 from Clostridium botulinum types C and D specifically ADP-ribosylated a 21-kilodalton cellular protein, p21.bot. Guanyl nucleotides protected the substrate against denaturation, which implies that p21.bot is a G protein. When introduced into the interior of cells, purified exoenzyme C3 ADP-ribosylated intracellular p21.bot and changed its function. NIH 3T3, PC12, and other cells rapidly underwent temporary morphological alterations that were in certain respects similar to those seen after microinjection of cloned ras proteins. When injected into Xenopus oocytes, C3 induced migration of germinal vesicles and potentiated the cholera toxin-sensitive augmentation of germinal vesicle breakdown by progesterone, also as caused by ras proteins. Nevertheless, p21.bot was immunologically distinct from p21ras.  相似文献   

16.
There is strong, albeit indirect, evidence for a mitogenic signal transduction pathway comprising growth factors, growth factor receptors, the GTPase activating protein (p120-GAP), and p21ras. To demonstrate a direct physical association between these proteins in the absence of other cell constituents, their interaction was studied in vitro. Our results obtained with homogeneous protein preparations show that the activated epidermal growth factor (EGF) receptor phosphorylates p120-GAP at one site. Phosphorylated p120-GAP remains firmly bound to the receptor at physiological salt concentration; this leads to product inhibition of the receptor kinase activity as shown by diminished autophosphorylation activity and lack of turnover in p120-GAP phosphorylation. Phosphorylated p120-GAP is as active in stimulating the p21ras.GTPase as unphosphorylated GAP. p120-GAP, however, when bound to the EGF receptor is by a factor of 2 less active in stimulating the p21ras.GTPase than free p120-GAP. This effect might contribute to regulate the steady-state level of p21-GTP.  相似文献   

17.
Microinjection of Xenopus oocytes with ras protein (p21) was used to investigate the role of phospholipid metabolism in ras-induced meiotic maturation. Induction of meiosis by ras was compared with induction by progesterone, insulin, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Neomycin, which specifically binds to phosphatidylinositides and inhibits their metabolism, blocked meiotic maturation induced by ras or insulin but not by progesterone or TPA. In addition, p21 and TPA, but not insulin or progesterone, stimulated the incorporation of 32Pi into oocyte lipids. ras protein specifically stimulated 32P incorporation into phosphatidylinositides, whereas both ras and TPA stimulated 32P incorporation into phosphatidylcholine and phosphatidylethanolamine. The stimulatory effect of p21 on phosphatidylinositide metabolism correlated with the dose response and kinetics of ras-induced meiotic maturation. In addition, the ras oncogene protein was more potent than the proto-oncogene protein both in inducing meiotic maturation and in stimulating phosphatidylinositide metabolism. These results indicate that phosphatidylinositide turnover is required for ras-induced meiosis and suggest that phosphatidylinositide-derived second messengers mediate the biological activity of ras in Xenopus oocytes.  相似文献   

18.
Microinjection of transforming p21 ras protein induces maturation of Xenopus laevis oocytes, and the induction is blocked by coinjection of monoclonal antibody (Y13-259) against p21 ras proteins. Similar to other inducing agents, the effect of p21 ras protein is mediated via the appearance of maturation or meiosis-promoting factor activity. In addition, the neutralizing antibody markedly reduces oocyte maturation after insulin induction, whereas it fails to inhibit progesterone induction. Our results suggest that insulin induces maturation of oocytes via a different pathway than that of steroidal agents. The induction by insulin is ras dependent, and the action of ras may be directed at the steps before meiosis-promoting factor autocatalytic activation. These results suggest a role of p21 ras protein in the events associated with amphibian oocyte maturation.  相似文献   

19.
The ability of Xenopus oocytes to undergo insulin- or insulin-like growth factor 1-induced meiotic maturation develops during oogenesis, with cells 1.0 mm in diameter or larger responding in a size-dependent manner. Since insulin-induced oocyte maturation was shown previously to be p21 ras-dependent, experiments were performed to test whether a deficiency in the p21 ras system might account for meiotic incompetence in small oocytes (less than or equal to 0.9 mm diameter). Both small and large oocytes were found to contain comparable levels of membrane-associated p21, as determined by protein immunoblotting. Treatment of both small and large oocytes with 2 microM insulin for 2 hr increased endogenous levels of membrane-associated p21 by approximately 70%. Stimulation of microinjected p21-membrane association by insulin was observed to be both time- and concentration-dependent in large oocytes with an EC50 of 50 nM. In addition, comparable levels of GTPase activating protein were measured in extracts prepared from oocytes ranging from 0.8 to 1.3 mm in diameter. Therefore, the p21 system is apparently not limiting during oogenesis, and expression of some other cellular component must account for development of meiotic competence in Xenopus oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号