首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Rho-Kinase is a serine/threonine kinase that is involved in the regulation of smooth muscle contraction and cytoskeletal reorganization of nonmuscle cells. While the signal transduction pathway in which Rho-Kinase participates has been and continues to be extensively studied, the kinetic mechanism of Rho-Kinase-catalyzed phosphorylation has not been investigated. We report here elucidation of the kinetic mechanism for Rho-Kinase by using steady-state kinetic studies. These studies used the kinase domain of human Rho-Kinase II (ROCK-II 1-534) with S6 peptide (biotin-AKRRRLSSLRA-NH(2)) as the phosphorylatable substrate. Double-reciprocal plots for two-substrate kinetic data yielded intersecting line patterns with either ATP or S6 peptide as the varied substrate, indicating that Rho-Kinase utilized a ternary complex (sequential) kinetic mechanism. Dead-end inhibition studies were used to investigate the order of binding for ATP and the peptide substrate. The ATP-competitive inhibitors AMP-PCP and Y-27632 were noncompetitive inhibitors versus S6 peptide, and the S6 peptide analogue S6-AA (acetyl-AKRRRLAALRA-NH(2)) was a competitive inhibitor versus S6 peptide and a noncompetitive inhibitor versus ATP. These results indicated a random order of binding for ATP and S6 peptide.  相似文献   

5.
Nuclear factor-kappaB activation depends on phosphorylation and degradation of its inhibitor protein, IkappaB. The phosphorylation of IkappaBalpha on Ser(32) and Ser(36) is initiated by an IkappaB kinase (IKK) complex that includes a catalytic heterodimer composed of IkappaB kinase 1 (IKK-1) and IkappaB kinase 2 (IKK-2) as well as a regulatory adaptor subunit, NF-kappaB essential modulator. Recently, two related IkappaB kinases, TBK-1 and IKK-i, have been described. TBK-1 and IKK-i show sequence and structural homology to IKK-1 and IKK-2. TBK-1 and IKK-i phosphorylate Ser(36) of IkappaBalpha. We describe the kinetic mechanisms in terms of substrate and product inhibition of the recombinant human (rh) proteins, rhTBK-1, rhIKK-I, and rhIKK-1/rhIKK-2 heterodimers. The results indicate that although each of these enzymes exhibits a random sequential kinetic mechanism, the effect of the binding of one substrate on the affinity of the other substrate is significantly different. ATP has no effect on the binding of an IkappaBalpha peptide for the rhIKK-1/rhIKK-2 heterodimer (alpha = 0.99), whereas the binding of ATP decreased the affinity of the IkappaBalpha peptide for both rhTBK-1 (alpha = 10.16) and rhIKK-i (alpha = 62.28). Furthermore, the dissociation constants of ATP for rhTBK-1 and rhIKK-i are between the expected values for kinases, whereas the dissociation constants of the IkappaBalpha peptide for each IKK isoforms is unique with rhTBK-1 being the highest (K(IkappaBalpha) = 69.87 microm), followed by rhIKK-i (K(IkappaBalpha) = 5.47 microm) and rhIKK-1/rhIKK-2 heterodimers (K(IkappaBalpha) = 0.12 microm). Thus this family of IkappaB kinases has very unique kinetic properties.  相似文献   

6.
Y J Farrar  G M Carlson 《Biochemistry》1991,30(42):10274-10279
The phosphorylase kinase holoenzyme from skeletal muscle is composed of a catalytic and three different regulatory subunits. Analysis of the kinetic mechanism of the holoenzyme is complicated because both the natural substrate phosphorylase b and also phosphorylase kinase itself have allosteric binding sites for adenine nucleotides. In the case of the kinase, these allosteric sites are not on the catalytic subunit. We have investigated the kinetic mechanism of phosphorylase kinase by using its isolated catalytic gamma-subunit (activated by calmodulin) and an alternative peptide substrate (SDQEKRKQISVRGL) corresponding to the convertible region of phosphorylase b, thus eliminating from our system all known allosteric binding sites for nucleotides. This peptide has been previously employed to study the kinetic mechanism of the kinase holoenzyme before the existence of the allosteric sites on the regulatory subunits was suspected [Tabatabai, L. B., & Graves, D. J. (1978) J. Biol. Chem. 253, 2196-2202]. This peptide was determined to be as good an alternative substrate for the isolated catalytic subunit as it was for the holoenzyme. Initial velocity data indicated a sequential kinetic mechanism with apparent Km's for MgATP and peptide of 0.07 and 0.47 mM, respectively. MgADP used as product inhibitor showed competitive inhibition against MgATP and noncompetitive inhibition against peptide, whereas with phosphopeptide as product inhibitor, the inhibition was competitive against both MgATP and peptide. The initial velocity and product inhibition studies were consistent with a rapid equilibrium random mechanism with one abortive complex, enzyme-MgADP-peptide. The substrate-directed, dead-end inhibitors 5'-adenylyl imidodiphosphate and Asp-peptide, in which the convertible Ser of the alternative peptide substrate was replaced with Asp, were competitive inhibitors toward their like substrates and noncompetitive inhibitors toward their unlike substrates, further supporting a random mechanism, which was also the conclusion from the report cited above that used the holoenzyme.  相似文献   

7.
Phosphatidylinositol-dependent activation of DNA polymerase alpha   总被引:1,自引:0,他引:1  
DNA polymerase alpha was activated in vitro by cAMP-independent, phospholipid-dependent, protein kinase catalytic subunit. Of the phospholipids examined, phosphatidylinositol showed the greatest potential for interaction with protein kinase and ATP to activate DNA polymerase alpha in vitro. DNA polymerase alpha was directly activated by phosphorylated phosphatidylinositol in the absence of protein kinase and ATP. Activation of DNA polymerase alpha as a function of phosphorylation was demonstrated using 32P-ATP as the phosphate donor. In vitro treatment of the enzyme with phosphatidylinositol produced Linweaver-Burk plots showing noncompetitive kinetics of enzyme activation, suggesting that activation occurs prior to binding of the enzyme to DNA template/primer. These data indicate that DNA polymerase alpha may be activated in vitro in the presence of protein kinase, ATP, and phosphatidylinositol, and suggest that phosphorylation of the enzyme may constitute an intracellular mechanism of enzyme activation.  相似文献   

8.
cdk2.cyclin E and cdk5.p25 are two members of the cyclin-dependent kinase family that are potential therapeutic targets for oncology and Alzheimer's disease, respectively. In this study we have investigated the mechanism for these enzymes. Kinases catalyze the transfer of phosphate from ATP to a protein acceptor, thus utilizing two substrates, ATP and the target protein. For a two-substrate reaction, possible kinetic mechanisms include: ping-pong, sequential random, or sequential ordered. To determine the kinetic mechanism of cdk2.GST-cyclin E and cdk5.GST-p25, kinase activity was measured in experiments in which concentrations of peptide and ATP substrates were varied in the presence of dead-end inhibitors. A peptide identical to the peptide substrate, but with a substitution of valine for the phosphoacceptor threonine, competed with substrate with a K(i) value of 0.6 mm. An aminopyrimidine, PNU 112455A, was identified in a screen for inhibitors of cdk2. Nonlinear least squares and Lineweaver-Burk analyses demonstrated that the inhibitor PNU 112455A was competitive with ATP with a K(i) value of 2 microm. In addition, a co-crystal of PNU 112455A with cdk2 showed that the inhibitor binds in the ATP binding pocket of the enzyme. Analysis of the inhibitor data demonstrated that both kinases use a sequential random mechanism, in which either ATP or peptide may bind first to the enzyme active site. For both kinases, the binding of the second substrate was shown to be anticooperative, in that the binding of the first substrate decreases the affinity of the second substrate. For cdk2.GST-cyclin E the kinetic parameters were determined to be K(m, ATP) = 3.6 +/- 1.0 microm, K(m, peptide) = 4.6 +/- 1.4 microm, and the anticooperativity factor, alpha = 130 +/- 44. For cdk5.GST-p25, the K(m, ATP) = 3.2 +/- 0.7 microm, K(m, peptide) = 1.6 +/- 0.3 microm, and alpha = 7.2 +/- 1.8.  相似文献   

9.
Adenosine-5'-phosphosulfate kinase (APS kinase) catalyzes the formation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the major form of activated sulfate in biological systems. The enzyme from Escherichia coli has complex kinetic behavior, including substrate inhibition by APS and formation of a phosphorylated enzyme (E-P) as a reaction intermediate. The presence of a phosphorylated enzyme potentially enables the steady-state kinetic mechanism to change from sequential to ping-pong as the APS concentration decreases. Kinetic and equilibrium binding measurements have been used to evaluate the proposed mechanism. Equilibrium binding studies show that APS, PAPS, ADP, and the ATP analog AMPPNP each bind at a single site per subunit; thus, substrates can bind in either order. When ATPgammaS replaces ATP as substrate the V(max) is reduced 535-fold, the kinetic mechanism is sequential at each APS concentration, and substrate inhibition is not observed. The results indicate that substrate inhibition arises from a kinetic phenomenon in which product formation from ATP binding to the E. APS complex is much slower than paths in which product formation results from APS binding either to the E. ATP complex or to E-P. APS kinase requires divalent cations such as Mg(2+) or Mn(2+) for activity. APS kinase binds one Mn(2+) ion per subunit in the absence of substrates, consistent with the requirement for a divalent cation in the phosphorylation of APS by E-P. The affinity for Mn(2+) increases 23-fold when the enzyme is phosphorylated. Two Mn(2+) ions bind per subunit when both APS and the ATP analog AMPPNP are present, indicating a potential dual metal ion catalytic mechanism.  相似文献   

10.
11.
The kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2 (MAPKAPK2) was investigated using a peptide (LKRSLSEM) based on the phosphorylation site found in serum response factor (SRF). Initial velocity studies yielded a family of double-reciprocal lines that appear parallel and indicative of a ping-pong mechanism. The use of dead-end inhibition studies did not provide a definitive assignment of a reaction mechanism. However, product inhibition studies suggested that MAPKAPK2 follows an ordered bi-bi kinetic mechanism, where ATP must bind to the enzyme prior to the SRF-peptide and the phosphorylated product is released first, followed by ADP. In agreement with these latter results, surface plasmon resonance measurements demonstrate that the binding of the inhibitor peptide to MAPKAPK2 requires the presence of ATP. Furthermore, competitive inhibitors of ATP, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) and a staurosporine analog (K252a), can inhibit this ATP-dependent binding providing further evidence that the peptide substrate binds preferably to the E:ATP complex.  相似文献   

12.
A novel inhibitor of p38 mitogen-activated protein kinase (p38), CMPD1, identified by high-throughput screening, is characterized herein. Unlike the p38 inhibitors described previously, this inhibitor is substrate selective and noncompetitive with ATP. In steady-state kinetics experiments, CMPD1 was observed to prevent the p38alpha-dependent phosphorylation (K(i)(app) = 330 nM) of the splice variant of mitogen-activated protein kinase-activated protein kinase 2 (MK2a) that contains a docking domain for p38alpha and p38beta, but it did not prevent the phosphorylation of ATF-2 (K(i)(app) > 20 microM). In addition to kinetic studies, isothermal titration calorimetry and surface plasmon resonance experiments were performed to elucidate the mechanism of inhibition. While isothermal titration calorimetry analysis indicated that CMPD1 binds to p38alpha, CMPD1 was not observed to compete with ATP for p38alpha, nor was it able to interrupt the binding of p38alpha to MK2a observed by surface plasmon resonance. Therefore, deuterium exchange mass spectrometry (DXMS) was employed to study the p38alpha.CMPD1 inhibitory complex, to provide new insight into the mechanism of substrate selective inhibition. The DXMS data obtained for the p38alpha.CMPD1 complex were compared to the data obtained for the p38alpha.MK2a complex and a p38alpha.active site binding inhibitor complex. Alterations in the DXMS behavior of both p38alpha and MK2a were observed upon complex formation, including but not limited to the interaction between the carboxy-terminal docking domain of MK2a and its binding groove on p38alpha. Alterations in the D(2)O exchange of p38alpha produced by CMPD1 suggest that the substrate selective inhibitor binds in the vicinity of the active site of p38alpha, resulting in perturbations to regions containing nucleotide binding pocket residues, docking groove residues (E160 and D161), and a Mg(2+) ion cofactor binding residue (D168). Although the exact mechanism of substrate selective inhibition by this novel inhibitor has not yet been disclosed, the results suggest that CMPD1 binding in the active site region of p38alpha induces perturbations that may result in the suboptimal positioning of substrates and cofactors in the transition state, resulting in selective inhibition of p38alpha activity.  相似文献   

13.
14.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

15.
The activation of phosphorylase kinase (EC 2.7.1.38; ATP:phosphorylase b phosphotransferase) by the catalytic subunit of cAMP-dependent protein kinase (EC 2.7.1.37; ATP:protein phosphotransferase) is inhibited by calmodulin. The mechanism of that inhibition has been studied by kinetic measurements of the interactions of the three proteins. The binding constant for calmodulin with phosphorylase kinase was found to be 90 nM when measured by fluorescence polarization spectroscopy. Glycerol gradient centrifugation studies indicated that 1 mol of calmodulin was bound to each phosphorylase kinase. Phosphorylation of the phosphorylase kinase did not reduce the amount of calmodulin bound. Kinetic studies of the activity of the catalytic subunit of cAMP-dependent protein kinase on phosphorylase kinase as a function of phosphorylase kinase and calmodulin concentrations were performed. The results of those studies were compared with mathematical models of four different modes of inhibition: competitive, noncompetitive, substrate depletion, and inhibition by a complex between phosphorylase kinase and calmodulin. The data conform best to the model in which the inhibitory species is a complex of phosphorylase kinase and calmodulin. The complex apparently competes with the substrate, phosphorylase kinase, which does not have exogenous calmodulin bound to it. In contrast, the phosphorylation of the synthetic phosphate acceptor peptide, Kemptide, is not inhibited by calmodulin.  相似文献   

16.
17.
18.
We have studied steady state kinetics of phosphorylation of [Val5]angiotensin II by pp60src, the transforming gene product of Rous sarcoma virus. Results of initial rate studies at varying substrate concentrations indicated that the mechanism was sequential; Michaelis constants for ATP and peptide were 7 microM and 0.24 mM, respectively, and Vmax was 1.0 nmol/min/mg. The end product ADP and the ATP analog AMP-PNP were competitive inhibitors at varying ATP concentrations and noncompetitive inhibitors at varying peptide concentrations. A dead-end analog of angiotensin II, [delta Phe4]angiotensin II, was a noncompetitive inhibitor at varying ATP concentrations, but induced substrate inhibition at varying peptide concentrations. The kinetic data allowed us to conclude that the reaction proceeded via an Ordered Bi Bi mechanism with ATP as the first binding substrate. We also presented evidence that, while pp60src contained essential histidine and/or lysine residues in its active site, the mechanism does not involve a phosphoryl enzyme intermediate.  相似文献   

19.
The kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase has been investigated employing the heptapeptide Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) as substrate. Initial velocity measurements performed over a wide range of ATP and Kemptide concentrations indicated that the reaction follows a sequential mechanistic pathway. In line with this, the results of product and substrate inhibition studies, the patterns of dead end inhibition obtained employing the nonhydrolyzable ATP analogue, AMP X PNP (5'-adenylylimidodiphosphate), and equilibrium binding determinations, taken in conjunction with the patterns of inhibition observed with the inhibitor protein of the cAMP-dependent protein kinase that are reported in the accompanying paper (Whitehouse, S., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3682-3692), are best fit by a steady state Ordered Bi-Bi kinetic mechanism. Although the inhibition patterns obtained employing the synthetic peptide analogue in which the phosphorylatable serine was replaced by alanine were apparently incompatible with this mechanism, these inconsistencies appear to be due to some element of the structure of this latter peptide such that it is not an ideal dead end inhibitor substrate analogue. The data presented both here and in the accompanying paper suggest that both this substrate, analogue and the ATP analogue, AMP X PNP, do not fully mimic the binding of Kemptide and ATP, respectively, in their mechanism of interaction with the protein kinase. It is proposed that, as with some other kinase reactions, the configuration of the terminal anhydride bond of ATP assumes a conformation once the nucleotide is bound to the protein kinase that assists in the binding of either Kemptide or the inhibitor protein but not the alanine-substituted peptide and that AMP X PNP, because of its terminal phosphorylimido bond, cannot assume this conformation which favors protein (or peptide) binding.  相似文献   

20.
JNK3 alpha 1 is predominantly a neuronal specific MAP kinase that is believed to require, like all MAP kinases, both threonine and tyrosine phosphorylation for maximal enzyme activity. In this study we investigated the in vitro activation of JNK3 alpha 1 by MAP kinase kinase 4 (MKK4), MAP kinase kinase 7 (MKK7), and the combination of MKK4 + MKK7. Mass spectral analysis showed that MKK7 was capable of monophosphorylating JNK3 alpha 1 in vitro, whereas both MKK4 and MKK7 were required for bisphosphorylation and maximal enzyme activity. Measuring catalysis under Vmax conditions showed MKK4 + MKK7-activated JNK3 alpha 1 had Vmax 715-fold greater than nonactivated JNK3 alpha 1 and MKK7-activated JNK3 alpha 1 had Vmax 250-fold greater than nonactivated JNK3 alpha 1. In contrast, MKK4-activated JNK3 alpha 1 had no increase in Vmax compared to nonactivated levels and had no phosphorylation on the basis of mass spectrometry. These data suggest that MKK7 was largely responsible for JNK3 alpha 1 activation and that a single threonine phosphorylation may be all that is needed for JNK3 alpha 1 to be active. The steady-state rate constants kcat, Km(GST-ATF2++), and Km(ATP) for both monophosphorylated and bisphosphorylated JNK3 alpha 1 were within 2-fold between the two enzyme forms, suggesting the addition of tyrosine phosphorylation does not affect the binding of ATF2, ATP, or maximal turnover. Finally, the MAP kinase inhibitor, SB203580, had an IC50 value approximately 4-fold more potent on the monophosphorylated JNK3 alpha 1 compared to the bisphosphorylated JNK3 alpha 1, suggesting only a modest effect of tyrosine phosphorylation on inhibitor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号