首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Persistent infectious virus was detected in the majority of spleens of (C57BL/10 X A.BY)F1 mice after spontaneous recovery from Friend virus-induced erythroleukeima. The Friend murine leukemia helper virus (F-MuLV) was detected in titers up to 3 X 10(5) PFU/g of spleen. The defective spleen focus-forming virus (SFFV) was present in much lower titers and could be detected in cell-free spleen homogenates only after amplification of virus titer by growth of virus in vitro on SC1 cells. The incidence of cells producing F-MuLV alone in spleens after recovery from leukemia was 0.003 to 0.3%, and the incidence of cells producing both F-MuLV and SFFV was less than 0.0001 to 0.01%. In most recovered mouse spleens there appeared to be a selective reduction of SFFV relative to F-MuLV.  相似文献   

2.
The genome of the Friend strain of the spleen focus-forming virus (SFFV) has been analyzed by molecular hybridization. SFFV is composed of genetic sequences homologous to Friend type C helper virus (F-MuLV) and SFFV-specific sequences not present in F-MuLV. These SFFV-specific sequences are present in both the Friend and Rauscher strains of murine erythroleukemia virus. The SFFV-specific sequences are partially homologous to three separate strains of mouse xenotropic virus but not to several cloned mouse ecotropic viruses. Thus, the Friend strain of SFFV appears to be a recombinant between a portion of the F-MuLV genome and RNA sequences that are highly related to murine xenotropic viruses. The implications of the acquisition of the xenotropic virus-related sequences are discussed in relation to the leukemogenicity of SFFV, and a model for the pathogenicity of other murine leukemia-inducing viruses is proposed.  相似文献   

3.
The spleen focus-forming virus (SFFV), a rapidly transforming, replication-defective virus in Friend virus (FV) complex that is readily neutralized by antisera directed against its helper virus, was examined for the presence of SFFV-specific antigens. Antisera prepared in Fisher rats against an SFFV-infected Fisher rat embryo fibroblast line (SFFV-FRE) neutralized SFFV effectively, but not Friend-associated murine leukemia virus (F-MuLV) whether the latter was tested alone or was mixed with SFFV in the FV complex. In contrast, serum from mice immunized with SFFV-infected nonproducer mouse cells had little or no neutralizing activity against SFFV. Both absorption and immunoprecipitation studies indicate that the SFFV-specific antigen is immunologically related to xenotropic murine leukemia virus antigens. The role of both SFFV- and F-MuLV-specific antigens in the neutralization of SFFV suggests that this defective virus could be an antigenic mosaic and that viruses in the FV complex may participate in a undirectional form of phenotypic mixing.  相似文献   

4.
Cytotoxic T cells (CTL) play a central role in the control of viral infections. Their antiviral activity can be mediated by at least two cytotoxic pathways, namely, the granule exocytosis pathway, involving perforin and granzymes, and the Fas-FasL pathway. However, the viral factor(s) that influences the selection of one or the other pathway for pathogen control is elusive. Here we investigate the role of viral replication levels in the induction and activation of CTL, including their effector potential, during acute Friend murine leukemia virus (F-MuLV) infection. F-MuLV inoculation results in a low-level infection of adult C57BL/6 mice that is enhanced about 500-fold upon coinfection with the spleen focus-forming virus (SFFV). Both the low- and high-level F-MuLV infections generated CD8+ effector T cells that were essential for the control of viral replication. However, the low-level infection induced CD8+ T cells expressing solely FasL but not the cytotoxic molecules granzymes A and B, whereas the high-level infection resulted in induction of CD8+ effector T cells secreting molecules of the granule exocytosis pathway. By using knockout mouse strains deficient in one or the other cytotoxic pathway, we found that low-level viral replication was controlled by CTL that expressed FasL but control of high-level viral replication required perforin and granzymes. Additional studies, in which F-MuLV replication was enhanced experimentally in the absence of SFFV coinfection, supported the notion that only the replication level of F-MuLV was the critical factor that determined the differential expression of cytotoxic molecules by CD8+ T cells and the pathway of CTL cytotoxicity.  相似文献   

5.
A new isolate of a murine erythroblastosis-inducing spleen focus-forming virus (Cas SFFV), derived from the wild mouse ecotropic murine leukemia virus Cas-Br-M, was further characterized after the production of a nonproducer cell line. When rescued from the nonproducer cells with a helper murine leukemia virus, the Cas SFFV induced rapid splenic enlargement and focus formation when inoculated into adult NFS/N mice. The Cas SFFV nonproducer cell line was also utilized to compare the envelope-related glycoprotein of Cas SFFV with gp52s from three strains of Friend SFFV. Cas SFFV was found to encode a 50,500-dalton glycoprotein (gp50) distinct in size to the envelope-related glycoproteins of the Friend SFFVs. The Cas SFFV was also compared in RNA blot hybridization studies. The genomic viral RNA of Cas SFFV was found to be slightly larger than two polycythemia-inducing strains of Friend SFFV and markedly larger than the anemia-inducing strain. Further comparisons between the SFFVs were made by examining their transforming capabilities in an in vitro erythroid burst assay. The erythroid bursts induced by Cas SFFV and the anemia-inducing strain of Friend SFFV showed similarities in their erythropoietin requirements. This study supports our recent observations that Cas SFFV is biologically similar to the anemia-inducing strain of Friend SFFV yet biochemically distinct from all Friend SFFVs.  相似文献   

6.
R Anand  R A Steeves  F Lilly 《Microbios》1989,58(235):71-82
The interaction between defective spleen focus-forming virus (SFFV) and helper virus(es) in Friend virus (FV) complex has been assumed to be one-way, with the helper virus complementing SFFV by supplying necessary virion components. To test this assumption the expression of both SFFV and helper virus in partially congenic mice which differ at the Fv-2 locus, a gene that specifically controls susceptibility to SFFV, was analysed. When the mice were infected with LLV (a strain of Friend SFFV-free helper virus), there was no detectable effect of Fv-2 genotype on LLV expression as tested by virus infectivity in the XC plaque assay or by quantitative viral antigen analysis in an immunoprecipitation assay. However, after infection with FV complex there was an amplification of LLV (as well as SFFV) synthesis in Fv-2s as compared with Fv-2r hosts. To determine whether the increased LLV synthesis in Fv-2s mice was due to an increased population of susceptible target cells as a result of SFFV infection and/or transformation, the ratios of LLV-infected cells in the spleens of LLV- and FV-infected Fv-2s hosts in an infectious centre assay, were compared. Since the percentage of LLV-infected cells was equivalent in both instances, the higher rate of LLV synthesis after infection with FV complex was presumably due to intrinsic properties of SFFV-infected erythroid cells.  相似文献   

7.
C Spiro  B C Gliniak    D Kabat 《Journal of virology》1989,63(10):4434-4437
Interleukin-3-dependent hematopoietic stem cells commonly accumulate in spleens of mice infected with leukemia viruses. To study their origins, a molecularly tagged helper-free Friend spleen focus-forming virus was used to produce erythroleukemias. Uninfected interleukin-3-dependent basophil-mast cell progenitors coproliferated amidst the spleen focus-forming virus-infected leukemic cells. Splenic proliferation of normal stem cells is apparently a host response to leukemogenesis, and we propose that it may contribute to certain retroviral diseases.  相似文献   

8.
The myeloproliferative leukemia virus (MPLV) is a new acute leukemogenic, nonsarcomatogenic retroviral complex that is generated during the in vivo passage of a molecularly cloned Friend ecotropic helper virus. Examination of viral RNA expression in MPLV-producing cells revealed the presence of two distinct molecular species that hybridized with a long terminal repeat or an ecotropic env-specific probe but not with a xenotropic mink cell focus-forming virus env-specific probe derived from a spleen focus-forming virus: an 8.2-kilobase species corresponding to a full-length Friend murine leukemia virus (F-MuLV) and a deleted species with a genomic size of 7.4 kilobases. This deleted virus was biologically cloned by limiting dilutions and single cell cloning in Mus dunni fibroblasts. Three nonproducer clones with normal morphologies and containing one single integrated copy of the deleted virus were superinfected with F-MuLV, Moloney murine leukemia virus, Gross murine leukemia virus, mink cell focus-forming virus (HIX), or the amphotropic 1504 murine leukemia virus. All pseudotypes caused macroscopic and microscopic abnormalities in mice that were similar to those seen in the parental stock. A comparison of the physical maps of F-MuLV and MPLV, which was deduced from the restriction enzyme digests of unintegrated proviral DNAs, indicated that the MPLV-defective genome (i) is probably derived from F-MuLV, (ii) has conserved the F-MuLV gag and pol regions, and (iii) is deleted and rearranged in the env region in a manner that is clearly distinct from that of Friend or Rauscher spleen focus-forming viruses.  相似文献   

9.
Friend murine leukemia virus (G-MuLV) is a helper-independent, type C retrovirus isolated from stocks of Friend virus complex (spleen focus-forming virus plus MuLV). In cell culture, F-MuLV has an ecotropic and NB-tropic host range and causes XC cells to fuse. When injected into newborn NIH Swiss mice, F-MuLV produces hepatosplenomegaly, severe anemia, and numerous circulating hematopoietic precursors in the peripheral blood with normal thymus and lymph nodes after 3 to 6 weeks. Recently, we molecularly cloned an 8.5-kilobase pair (kbp) form of F-MuLV DNA from which we could recover the pathogenic F-MuLV virus by DNA transfection of NIH 3T3 cells. From this molecularly cloned F-MuLV DNA, we have now subcloned in pBR322 a 4.1-kbp HindIII fragment which contains in continuity 3.0 kbp from the 3' terminus (env and c region), 0.6 kbp of the terminal repeat sequences, and 0.5 kbp from the 5'terminus of the viral RNA (genome). NIH 3T3 fibroblasts were transfected with this DNA fragment an then infected with the wild mouse amphotropic retrovirus (cl 1504-A). In cell culture, 1504-A is a helper-independent type C virus which has an N-tropic host range and does not cause fusion of XC cells. When injected into newborn NIH Swiss mice, 1504-A does not produce splenomegaly or thymic enlargement in mice held for up to 8 months. The transfection with the F-MuLV fragment and the infection with 1504-A consistently yielded virus preparations that were XC positive. From such virus stocks we were able to isolate both helper-independent and replication-defective XC-positive viruses. The helper-independent virus was shown to be a recombinant virus since it contains a gp70 molecule derived at least in part from F-MuLV and a specific gag precursor derived from 1504-A as determined by radioactive immune precipitation assays. When injected into newborn Swiss mice, the recombinant helper-independent virus caused hepatosplenomegaly in approximately 50% of the mice in 6 to 8 weeks. The histology of the diseased splenic tissue was indistinguishable from that seen in the disease caused by the whole F-MuLV. The replication-defective virus could be pseudotyped with new 1504-A virus, and this viral complex also caused the F-MuLV disease picture when the complex was injected into newborn Swiss mice. We conclude that the genetic information responsible for the pathogenicity of F-MuLV is contained within the 4.1-kbp DNA fragment, which includes env gene sequences, the terminal repeat sequences, and the c region sequences of the F-MuLV genome.  相似文献   

10.
If the env gene of spleen focus-forming virus (SFFV) is replaced by a cDNA encoding a constitutively active form of the erythropoietin receptor, EPO-R(R129C), the resultant recombinant virus, SFFVcEPO-R, induces transient thrombocytosis and erythrocytosis in infected mice. Clonogenic progenitor cell assays of cells from the bone marrow and spleens of these infected mice suggest that EPO-R(R129C) can stimulate proliferation of committed megakaryocytic and erythroid progenitors as well as nonerythroid multipotent progenitors. From the spleens of SFFVcEPO-R-infected mice, eight multiphenotypic immortal cell lines were isolated and characterized. These included primitive erythroid, lymphoid, and monocytic cells. Some expressed proteins characteristic of more than one lineage. All cell lines resulting from SFFVcEPO-R infection contained a mutant form of the p53 gene. However, in contrast to infection by SFFV, activation of PU.1 gene expression, by retroviral integration, was not observed. One cell line had integrated a provirus upstream of the fli-1 gene, in a location typically seen in erythroleukemic cells generated by Friend murine leukemia virus infection. This event led to increased expression of fli-1 in this cell line. Thus, infection by SFFVcEPO-R can induce proliferation and lead to transformation of nonerythroid as well as very immature erythroid progenitor cells. The sites of proviral integration in clonal cell lines are distinct from those in SFFV-derived lines.  相似文献   

11.
The Friend spleen focus-forming virus (SFFV) is an envelope gene recombinant between the ecotropic Friend murine leukemia virus and the endogenous xenotropic mink cell focus-forming retroviral sequences. We synthesized an octadecanucleotide complementary to the 3' end of the SFFV env gene designed for discriminating the SFFV proviruses from the xenotropic mink cell focus-forming virus and ecotropic exogenous or endogenous viral sequences. Under appropriate hybridization conditions this probe allowed the identification, in addition to few endogenous DNA fragments, of multiple SFFV proviruses integrated in the genome of Friend malignant cells. Therefore this probe should be of interest in further characterizing the SFFV integration sites and possibly the SFFV ancestor gene.  相似文献   

12.
T.M. Dexter  D. Scott  N.M. Teich 《Cell》1977,12(2):355-364
Long-term cultures of proliferating hematopoietic stem cells derived from bone marrow permit the study of the interaction between murine leukemia virus (MuLV) infection and the proliferation and differentiation of stem cells. We have used this system to analyze the replication of different biological variants of MuLV in bone marrow cells; the effect of MuLV infection upon pluripotent stem cell (CFU-S) proliferation; and the effect of MuLV on differentiation of CFU-S along different hematopoietic pathways. Two MuLV variants were studied in detail: the Moloney strain of lymphatic leukemia virus (Mol-MuLV) and the erythroleukemic Friend virus complex (FLV) consisting of the lymphoid leukemia helper virus and the defective spleen focus-forming virus (SFFV). Mol-MuLV and its sarcoma virus pseudotype, MSV(Mol-MuLV), replicate efficiently in the bone marrow cultures; however, CFU-S are lost more readily than in uninfected cultures, and the cultures are soon represented by a majority population of mononuclear macrophages. On the other hand, infection with FLV produces a prolonged survival of the spleen colony-forming cells, CFU-S, and CFU-C (the committed granulocytic precursor cells). Production of erythroleukemogenic SFFV is maintained in these cultures for more than 40 weeks. No erythroblastic differentiation was observed in vitro, however, neither erythroblast precursor cells (CFU-E) nor hemoglobin-producing cells could be detected. This suggests that the target cell for FLV is an earlier precursor cell.  相似文献   

13.
Co-infection of neonatal BALB/c mice with Friend virus (FV) complex (containing defective spleen focus-forming virus [SFFV] and endogenous N-tropic leukemia-inducing helper virus [LLV-F]) and B-tropic Tennant leukemia virus (TenLV) resulted in the inhibition of LLV-F by the Fv-1(b) gene and recovery of a TenLV pseudotype of SFFV, abbreviated SFFV(TenLV). The host range of this pseudotype was B-tropic, since SFFV(TenLV) was 10 to 100 times more infectious for B-type (Fv-1(bb)) than for N-type (Fv-1(nn)) mice. The similar patterns of neutralization of N-tropic and B-tropic SFFV by type-specific murine antisera suggested that the difference in infectivity between these two SFFV preparations did not reside in envelope determinants. Rather, helper control of SFFV's host range was only apparent and dependent upon the ability of associated virus to provide a helper function for late stages in SFFV synthesis. Early stages in SFFV's infectious cycle were shown to be helper independent. The Fv-1 gene did not act at the level of the cell membrane to effectively restrict SFFV infection, since SFFV-induced transformed cells could be detected in the absence of spleen focus formation and SFFV synthesis. Further, the generation of these transformed cells by SFFV followed a one-hit, dose-response pattern, suggesting that SFFV-induced cell transformation is helper independent. Finally, restriction of helper function by Fv-1 may be an intracellular event, because both SFFV and its associated LLV-F helper share common envelope determinants and presumably adsorb onto and penetrate target cells with equal efficiency.  相似文献   

14.
Using the Southern blot procedure, we studied the presumed spleen focus-forming virus (SFFV) provirus integration sites in the genome of the premalignant and the malignant cells isolated during the course of Friend erythroleukemia. Two restriction endonucleases, PstI and BamHI, discriminated the presumed integrated SFFV proviruses from the endogenous xenotropic-mink cell focus-forming viral sequences. No SFFV integration sites were detectable in the premalignant cells, suggesting a random integration of SFFV proviruses in the genome of these cells. In contrast, SFFV proviruses were detected at a single or very few sites in the genome of all malignant cells we analyzed. These results indicate that the event leading to the malignant transformation in acute Friend leukemia is clonal. In two of the six animals examined, tumors cells isolated from the spleens and the livers of individual mice showed identical SFFV integration patterns. This last result suggests that in some cases different tumors in a same leukemic animal could be derived from a unique clonal event.  相似文献   

15.
C Spiro  B Gliniak    D Kabat 《Journal of virology》1988,62(11):4129-4135
A colinear molecular clone of the Lilly-Steeves polycythemia strain of Friend spleen focus-forming virus (SFFV) was modified by inserting a 215-base-pair tag of simian virus 40 DNA into its nonfunctional pol gene region. The DNA was then transfected into psi-2 packaging cells, and helper-free tagged SFFV was recovered in the culture medium. Injection of this helper-free virus into NIH/Swiss mice caused transient mild splenomegaly and formation of spleen foci at 9 to 10 days. Although the vast majority of infected erythroblast clones then differentiated and died out, rare cell clones that were present in only 20 to 30% of the mice grew extensively by 26 to 33 days to form transplantable leukemias. The clonality of these leukemias was established by Southern blot analysis of their DNAs by using several restriction endonucleases and the simian virus 40 tag as a hybridization probe. All transplantable leukemias lacked helper virus contamination and contained a single tagged SFFV provirus that expressed the mitogenic env gene product gp55. The SFFV proviruses in these leukemias also appeared to be integrated into a few tightly clustered sites in the cellular genome. Although the tagged SFFV caused polycythemia during the polyclonal early stage of erythroblastosis, growth of the helper-free clonal erythroleukemias caused severe anemia. These results suggest that a single SFFV can cause mitosis of erythroblasts, and that cell immortalization also occurs when the provirus integrates into a critical site in the host genome. We propose that mice with clonal-stage leukemia become anemic because the immortalizing proviral integrations interfere with the cellular commitment to differentiate.  相似文献   

16.
Friend murine leukemia helper viruses (F-MuLV) 57 and B3 were indistinguishable by genomic structural analyses with RNase T1-resistant oligonucleotide fingerprinting and by antigenic reactivity with a panel of 31 monoclonal antibodies directed against murine leukemia viruses. Nevertheless, F-MuLV 57 and B3 had strikingly different virulences. Approximately 2 months after inoculation, IRW and NFS/N mice inoculated as newborns with F-MuLV 57 had gross splenomegaly caused by erythroid proliferation. In contrast, an equivalent dose of F-MuLV B3 induced spleen or lymph node enlargement 4 to 13 months after inoculation. Although most cases of spleen enlargement in F-MuLV B3-inoculated mice were due to erythroid proliferation, lymphoid or myeloid proliferation was also frequently observed. The replication of both F-MuLV 57 and B3 was equally efficient, and both viruses generated recombinant dual-tropic mink cell focus-forming (MCF) viruses with the same kinetics and efficiency. Moreover, MCF viruses induced by F-MuLV 57 and B3 had the same antigenic patterns. Therefore, the ability of F-MuLV to induce early splenomegaly did not correlate with the generation of recombinant MCF viruses.  相似文献   

17.
H Amanuma  N Watanabe  M Nishi    Y Ikawa 《Journal of virology》1989,63(11):4824-4833
In order to obtain evidence for the essential role of the single base insertion occurring at the 3' end of the env-related gene of Friend spleen focus-forming virus (SFFV) encoding the leukemogenic glycoprotein (gp55) a mutant SFFV genome was constructed in which the segment of the gp55 gene of the polycythemia-inducing strain of SFFV containing the single base insertion and the 6-base-pair duplication was replaced by the corresponding sequence of the Friend murine leukemia virus env gene. The mutant SFFV-Friend murine leukemia virus complex did not induce symptoms of the erythroproliferative disease in adult DBA/2 mice. During passage through newborn DBA/2 mice, the mutant virus complex invariably gave rise to weakly pathogenic variant SFFVs. All of the variant SFFVs induced in adult DBA/2 mice a transient mild splenomegaly associated with normal or slightly low hematocrit value, and they produced gp55 with a molecular weight similar to that of gp55 of the wild-type SFFV. For the two isolates of variant SFFV, the 3' portion of the viral DNA intermediate containing the 3' portion of the gp55 gene was molecularly cloned. Nucleotide sequences of these biologically active cloned DNAs were determined and showed that the variant SFFV genomes arose from the mutant SFFV genome by regaining the single base insertion, indicating that the single base insertion is essential for the biological activity of gp55. Evidence is presented indicating that the single base insertion which causes a loss of the cytoplasmic domain of the env-related protein is not related to the localization of the further-glycosylated form of gp55 in the plasma membrane but is involved with the release of gp55 from cells.  相似文献   

18.
Live-attenuated retroviruses have been shown to be effective retroviral vaccines, but currently little is known regarding the mechanisms of protection. In the present studies, we used Friend virus as a model to analyze characteristics of a live-attenuated vaccine in protection against virus-induced disease. Highly susceptible mice were immunized with nonpathogenic Friend murine leukemia helper virus (F-MuLV), which replicates poorly in adult mice. Further attenuation of the vaccine virus was achieved by crossing the Fv-1 genetic resistance barrier. The minimum dose of vaccine virus required to protect 100% of the mice against challenge with pathogenic Friend virus complex was determined to be 103 focus-forming units of attenuated virus. Live vaccine virus was necessary for induction of immunity, since inactivated F-MuLV did not induce protection. To determine whether immune cells mediated protection, spleen cells from vaccinated donor mice were adoptively transferred into syngeneic recipients. The results indicated that immune mechanisms rather than viral interference mediated protection.  相似文献   

19.
The Friend or Moloney mink cell focus-forming (MCF) virus encodes a recombinant-type envelope glycoprotein, gp70, that is closely related to the membrane glycoprotein, gp55, of Friend spleen focus-forming virus (SFFV). We have shown previously that gp55 has the ability to activate cell growth by binding to the cellular receptor for erythropoietin. Here we show that gp70 encoded by either the Friend or Moloney MCF virus also binds to the erythropoietin receptor and that coexpression of the receptor and gp70 in an interleukin-3 (IL-3)-dependent cell line can activate IL-3-independent growth. Furthermore, when the cDNA for the human IL-2 receptor beta chain, which is related by sequence to the erythropoietin receptor, was introduced into this cell line, it became growth factor independent after infection either with SFFV or with one of the two MCF viruses but not with an ecotropic virus. Based on these observations, we propose a mechanism for the early stage of leukemogenesis induced by the MCF-type murine leukemia viruses.  相似文献   

20.
Friend murine leukemia virus (F-MuLV) is a highly leukemogenic replication-competent murine retrovirus. Both the F-MuLV envelope gene and the long terminal repeat (LTR) contribute to its pathogenic phenotype (A. Oliff, K. Signorelli, and L. Collins, J. Virol. 51:788-794, 1984). To determine whether the F-MuLV gag and pol genes also possess sequences that affect leukemogenicity, we generated recombinant viruses between the F-MuLV gag and pol genes and two other murine retroviruses, amphotrophic clone 4070 (Ampho) and Friend mink cell focus-inducing virus (Fr-MCF). The F-MuLV gag and pol genes were molecularly cloned on a 5.8-kilobase-pair DNA fragment. This 5.8-kilobase-pair F-MuLV DNA was joined to the Ampho envelope gene and LTR creating a hybrid viral DNA, F/A E+L. A second hybrid viral DNA, F/Fr ENV, was made by joining the 5.8-kilobase-pair F-MuLV DNA to the Fr-MCF envelope gene plus the F-MuLV LTR. F/A E+L and F/Fr ENV DNAs generated recombinant viruses upon transfection into NIH 3T3 cells. F/A E+L virus (F-MuLV gag and pol, Ampho env and LTR) induced leukemia in 20% of NIH Swiss mice after 6 months. Ampho-infected mice did not develop leukemia. F/Fr ENV virus (F-MuLV gag and pol, Fr-MCV env, F-MuLV LTR) induced leukemia in 46% of mice after 3 months. Recombinant viruses containing the Ampho gag and pol, Fr-MCF env, and F-MuLV LTR caused leukemia in 38% of mice after 6 months. We conclude that the F-MuLV gag and pol genes contain sequences that contribute to the pathogenicity of murine retroviruses. These sequences can convert a nonpathogenic virus into a leukemia-causing virus or increase the pathogenicity of viruses that are already leukemogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号