首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined systemic testosterone concentrations in rams that were classified according to their sexual behavior and partner preference as either female-oriented (FOR), male-oriented (MOR), or asexual (NOR). For this purpose, we measured testosterone concentrations under three separate conditions: in conscious rams during the nonbreeding season (June) and breeding season (November), and in anesthetized rams during the breeding season. Basal testosterone concentrations in conscious rams were not different among the three groups (P > 0.05) in either season. However, when rams were anesthetized, mean systemic concentrations of testosterone in FORs (mean +/- SEM, 13.9 +/- 7.4 ng/ml serum) were greater (P < 0.05) than in NORs (0.9 +/- 0.1 ng/ml), but not in MORs (2.2 +/- 6.2 ng/ml), whereas testosterone concentrations were not different between MORs and NORs (P > 0.05). Concentrations of testosterone in the spermatic vein of FORs (127 +/- 66 ng/ml) were greater (P < 0.05) than in MORs (41 +/- 10 ng/ml) and NORs (19 +/- 7 ng/ml). Serum LH concentrations were not different. Cortisol was higher (P < 0.05) in anesthetized MORs (25.1 +/- 4.2 ng/ml) and NORs (27.2 +/- 4.4 ng/ml) than in FORs (10.9 +/- 1.8 ng/ml). These results demonstrate that circulating testosterone concentrations are related to sexual behavior only when rams are bled under anesthesia. Thus, differences in basal androgen concentrations in adulthood cannot be responsible for expression of male-oriented preferences or low libido in sheep. Instead, functional differences must exist between the brains of rams that differ in sexual preference expression.  相似文献   

2.
Blood, testicular biopsies and electroejaculates were collected from adult male impala, free-ranging in the Kruger National Park (Republic of South Africa), during the breeding (rut; April-May) and nonbreeding (September-October) seasons. Blood samples were collected at 5-min intervals for 120 min from anaesthetized males (n = 7 impala/group) treated intravenously with saline, gonadotrophin-releasing hormone (GnRH: 1 microgram/kg body weight) or human chorionic gonadotrophin (hCG: 10 or 30 iu/kg). Semen was collected from six more animals during the breeding season and 12 animals during the nonbreeding season using a standardized electroejaculation protocol. Ejaculates obtained during the nonbreeding season were of inferior quality to those collected during the breeding season, and were characterized by lower sperm concentrations, poorer sperm motility and more morphologically abnormal sperm forms. Within season, there were no differences in testosterone secretion between the two hCG doses, and these responses were similar to those observed after GnRH, but during the rut, testosterone secretion stimulated by both GnRH and hCG was approximately nine times greater than during the nonbreeding season. This seasonal increase in testosterone production was associated with a doubling in testicular volume and concentrations of luteinizing hormone (LH) receptors. Although concentrations of testicular follicle-stimulating hormone (FSH) receptors were similar between seasons, receptor content increased during rut as a result of increased testicular volume. In contrast to testosterone secretion, basal LH and FSH secretions were unaffected by season and GnRH-induced gonadotrophin secretion was reduced during rut.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Studies were conducted to determine the 24-hour fluctuations in blood serum testosterone concentration in adult buffalo bulls, and to measure testosterone secretion before and after GnRH administration in male buffaloes of different age groups. Testosterone levels in three sexually mature bulls ranged from 0.2 to 2.7 ng/ml with a mean of 0.6 +/- 0.2 ng/ml. Samples collected in November had significantly higher (P<0.05) testosterone than those drawn in February (dry season) as did samples collected during the day as opposed to the night. Sera testosterone concentrations were lower in younger bulls with a range of 0.2 to 0.6 ng/ml. GnRH induced an increase in testosterone in 6, 12, 24 and 36-month old bulls with the greatest response being observed at 36 months. GnRH did not elicit a response in one-month old bulls. It may be concluded that baseline sera testosterone concentrations in buffalo bulls, as well as responsiveness to GnRH injection, increase with sexual maturity and are subject toseasonal and diurnal variations.  相似文献   

4.
The squirrel monkey (Saimiri boliviensis boliviensis) has a well-defined breeding season during which adult males undergo androgen-dependent morphological changes, with acquisition of active spermatogenesis. To assess the hormonal events of this annual cycle, blood samples were obtained weekly from ten adult males, and serum was assayed for testosterone (T), androstenedione (ΔA), and dehydroepiandrosterone (DHEA). A significant seasonal variation was noted in mean serum T (P < 0.02), ΔA (P < 0.02), and DHEA (P < 0.001) concentrations. Mean ΔA concentrations increased from a nonbreeding season nadir of 91.4 ± 12.9 ng/ml (mean ± standard error) to a prebreeding concentration of 139 ± 10.5 ng/ml and breeding season peak of 167.5 ± 15.4 ng/ml (P < 0.05). Mean DHEA concentrations increased from a nonbreeding season nadir of 8.3 ± 0.8 to a breeding season peak of 14.3 ± 1.2 (P < 0.001). Mean T levels in the nonbreeding (52.2 ± 11.6 ng/ ml) and prebreeding season (48.6 ± 7.4) were similar. However, T significantly increased during the breeding season to 103.5 ± 12.8 ng/ml (P < 0.05). Progressive changes in body weight and morphology paralleled the rise in serum ΔA levels. The pattern of peripheral serum androgen concentrations throughout the year would suggest annual activation of the hypothalamic-pituitary-adrenal and/or hypothalamic-pituitary-gonadal axes.  相似文献   

5.
In castrated rams (Romney and Poll Dorset, n = 8 for each breed), inhibition by testosterone treatment (administered via Silastic capsules) of luteinizing hormone (LH) pulse frequency, basal and mean LH concentrations, mean follicle-stimulating hormone (FSH) concentration, and the peak and total LH responses to exogenous gonadotrophin-releasing hormone (GnRH) were significantly (P less than 0.01) greater during the nonbreeding than during the breeding season. Poll Dorset rams were less sensitive to testosterone treatment than Romney rams. In rams not receiving testosterone treatment, LH pulse frequency was significantly (P less than 0.05) lower during the nonbreeding season than during the breeding season in the Romneys (15.8 +/- 0.9 versus 12.0 +/- 0.4 pulses in 8 h), but not in the Poll Dorsets (13.6 +/- 1.2 versus 12.8 +/- 0.8 pulses in 8 h). It is concluded that, in rams, season influences gonadotrophin secretion through a steroid-independent effect (directly on hypothalamic GnRH secretion) and a steroid-dependent effect (indirectly on the sensitivity of the hypothalamo-pituitary axis to the negative feedback of testosterone). The magnitude of these effects appears to be related to the seasonality of the breed.  相似文献   

6.
Ten bulls with a scrotal circumference of less than 30 cm at the end of growth performance testing, and 10 cohorts of the same age, size and breed type with a scrotal circumference greater than 30 cm were used to evaluate if testosterone response following GnRH administration could be used to test for fertility, for semen quality, and for specific pathologic testicular parenchymal changes. Serum testosterone concentrations were determined immediately before and 2 to 3 hours following intramuscular injection of 250 ug GnRH. Bulls were examined for breeding soundness, then fertility was tested in a breeding trial; testicular histology was assessed by determining the percentage of cross-sections of seminiferous tubules with no spermatocytes. The mean (+/- SEM) post-GnRH serum testosterone concentration for all bulls was 11.71 (+/-0.64) ng/ml. In order to examine for an association, the GnRH response was classified as above or below the mean for resultant serum testosterone concentration. The GnRH response classification was not related to the scrotal circumference, percentage of tubules devoid of spermatocytes, or percentage of progressively motile spermatozoa (P > 0.10). The percentage of morphologically normal spermatozoa was significantly higher (P < 0.05) in the bulls with a higher than mean testosterone secretion in response to GnRH injection. In the breeding trial, the percentage of heifers bred and the percentage of heifers pregnant (60 days post breeding) were not significantly different (P > 0.10) between the 2 classifications of GnRH response. The GnRH response test was related to the percentage of morphologically normal spermatozoa but did not predict fertility of yearling bulls in this study.  相似文献   

7.
Groups of bull calves received a primary immunization against testosterone (Group T; N = 7) or oestradiol-17 beta (Group E; N = 9) at 3 months of age and booster injections on four occasions at approximately 2 month intervals. Controls (Group C, N = 7) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group T (730 +/- 231; reciprocal of titre) and Group E (12,205 +/- 4366) bulls; however, peak antibody titres generally declined with successive booster injections. Mean plasma concentrations of LH, FSH and testosterone during the period from 3 to 10 months of age were higher (P less than 0.05) in Group T bulls than in Groups C and E. Group T bulls had larger testes compared with controls from 6 months of age onwards. At castration at 14 months of age, testes of Group T bulls were heavier (P less than 0.05) than those of Groups C and E (179 +/- 13, 145 +/- 8 and 147 +/- 6 g, respectively). At 10 months of age, there were no differences among treatment groups in LH responses to LHRH, but the testosterone responses were greater (P less than 0.05) in bulls in Group T (26.2 +/- 4.9 ng/ml) and Group E (16.6 +/- 1.8 ng/ml) compared with those in Group C (6.9 +/- 0.6 ng/ml). Testosterone responses to hCG determined at 13 months of age were also greater (P less than 0.05) in Groups T and E relative to controls. At 14 months of age daily sperm production rates per bull (X 10(-9)) were higher (P less than 0.10) in Group T bulls (2.2 +/- 0.1) than those in Groups C (1.6 +/- 0.2) and E (1.6 +/- 0.1). These results indicate that early immunity against testosterone is associated with increased gonadotrophin secretion and accelerated growth of the testes in prepubertal bulls. Also, chronic immunity against testosterone or oestradiol-17 beta enhances the steroidogenic response of bull testes to gonadotrophic stimulation. If the above responses observed in young bulls are shown to be sustained, then immunity against gonadal steroids early in life may confer some reproductive advantage in mature animals.  相似文献   

8.
The possibility of seasonal variation in the feedback effect of testosterone or oestradiol was investigated by giving replacement treatment to geldings for 2-3 weeks during breeding and non-breeding seasons. In the non-breeding season, testosterone suppressed LH values (mean +/- s.e.m., ng/ml) in all geldings (before treatment, 7.5 +/- 2.3; final treatment week, 1.8 +/- 0.2; P less than 0.05), whereas early in the breeding season, testosterone caused a prolonged rise in LH (before, 6.8 +/- 2.3; final week, 18.9 +/- 6.4; P less than 0.05). In all testosterone experiments, LH returned to pretreatment levels within 2 weeks after treatment. Oestradiol treatment caused a prolonged increase (P less than 0.05) in LH concentrations (mean +/- s.e.m., ng/ml) in both seasons (breeding: before 5.2 +/- 1.1; final week, 16.2 +/- 4.8; non-breeding before, 10.9, 20.1 +/- 5.2). We conclude that in geldings the feedback effect of testosterone varies with season and, further, that testosterone replacement may be able to restore to geldings the stallion's seasonal pattern of LH secretion. The results suggest that, in male horses, testosterone and possibly oestradiol, are important components in the neuroendocrine pathway controlling seasonal breeding and, moreover, are essential for the generation of a positive signal for LH secretion in the breeding season.  相似文献   

9.
Male (N = 8) and female (N = 8) pigs were assigned to receive saline or a potent GnRH antagonist ([Ac-D2Nal1,D4-Cl-Phe2,D-Trp3,D-Arg6, D-Ala10]- GnRH*HOAc; 1 mg/kg body weight) at 14 days of age. The GnRH antagonist caused LH to decline (P less than 0.01) from 1.7 ng/ml at 0 h to less than 0.5 ng/ml during 4-32 h in males and females. Concentrations of FSH in gilts declined slowly from 75 +/- 8 to 56 +/- 5 ng/ml (P less than 0.05) at 32 h. In males FSH was low (5.7 +/- 0.5 ng/ml) at 0 h and did not change significantly. To observe the effect of long-term treatment with GnRH antagonist, 10 male and 10 female pigs, 3 days of age, were treated with saline or 1 mg GnRH antagonist per kg body weight every 36 h for 21 days. Concentrations of LH were reduced (P less than 0.01) to 0.2-0.4 ng/ml throughout the experimental period in male and female piglets treated with GnRH antagonist. Plasma FSH increased in control females, but remained suppressed (P less than 0.001) in females treated with GnRH antagonist. Treatment with the GnRH antagonist suppressed FSH levels in males on Days 8 and 16 (P less than 0.05), but not on Day 24. Treatment of females with the GnRH antagonist did not influence (P greater than 0.10) oestradiol-17 beta concentrations. Administration of GnRH antagonist to males suppressed testosterone and oestradiol-17 beta values (P less than 0.01) and reduced testicular weight (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Variation in ability of boars to produce testosterone and luteinizing hormone (LH) in response to both gonadotropin releasing hormone (GnRH) and adrenocorticotropic hormone (ACTH) stimulation, as well as quantitative relationships between pretreatment and posttreatment responses, were assessed in a population of 38 boars of similar age and breeding. Peripheral testosterone concentrations following either GnRH or ACTH increased (P less than 0.01) to peak circulating levels of 7.16 +/- 0.62 and 8.42 +/- 0.81 ng/ml by 120 and 45 min, respectively. Post-GnRH testosterone area varied from 7.44 to 50.84 ng/ml X h (CV = 47.44%) and post-ACTH testosterone area ranged from 3.05 to 28.78 ng/ml X h (CV = 46.09%). GnRH-induced increases in testosterone were preceded by elevations (P less than 0.01) in peripheral LH concentrations but ACTH had no effect upon LH levels. Post-GnRH area varied from 7.07 to 125.45 ng/ml X h (CV = 76.61%). Significant (P less than 0.01) correlations were obtained between pre-GnRH and post-GnRH testosterone areas (r = 0.58) and between pre-ACTH and post-ACTH testosterone areas (r = 0.67). Nonsignificant (P greater than 0.10) correlations were obtained between post-GnRH and post-ACTH testosterone areas (r = 0.006) and between post-GnRH testosterone and LH areas (r = 0.09). The testosterone producing ability of boars was highly variable and their innate ability to produce testosterone influenced their response to GnRH and ACTH. Additionally, the mechanisms by which GnRH and ACTH influence testosterone production in boars appear to differ. Variation in the ability of boars to produce testosterone could not be explained on the basis of differences in circulating levels of LH.  相似文献   

11.
Four groups of mares, representing anestrus (AN; n = 8), early transition (ET; n = 7), late transition (LT; n = 8) and estrus (EST; n = 12) were used to examine changes in the hypothalamus and anterior pituitary during the period of transition from winter anestrus into the breeding season. Mares were of mixed breeding, between the ages of 3 and 20 years, and had shown normal patterns of estrous behavior and ovulation during the breeding season previous to this experiment. Hypothalamic content of gonadotropin-releasing hormone (GnRH) and anterior pituitary content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were determined by radioimmunoassay. The number of receptors for GnRH in anterior pituitary tissue was also determined. There was no effect of stage of transition into the breeding season on receptors for GnRH or content of FSH (p greater than 0.05). Likewise, content of GnRH in the hypothalamus did not differ between the four groups (p greater than 0.05). However, pituitary content of LH increased progressively from anestrus to the breeding season (p less than 0.05). Means for the AN, ET, LT and EST groups were 1.1 +/- 0.2, 2.2 +/- 0.3, 6.3 +/- 1.4 and 15.2 +/- 1.8 micrograms LH/mg pituitary, respectively. In addition, serum concentrations of LH associated with the first ovulation of the year for 5 of the EST mares were significantly lower (p less than 0.01) than those associated with the second ovulation of the year.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effects of estradiol on serum luteinizing hormone (LH) were studied in prepubertal boars. In Exp. 1, 15-wk-old boars were given (iv) 50 mug estradiol, 1 mg testosterone or 1.5 ml ethanol. Estradiol (P<0.05) decreased LH over a 2.5-hr period, but testosterone did not. In Exp. 2, an estradiol implant reduced LH sample variance (P<0.01) while LH (547 +/- 96 vs 655 +/- 43 pg/ml) and estradiol (14.2 +/- 3.3 vs 18.4 +/- 1.0 pg/ml; control vs implant) were unchanged in 12-wk-old boars. Pulsatile LH releases (4.3 +/- 1.1 vs 3.0 +/- 0.4 pulses/pig/8 hr; control vs treated) and pulse amplitude (272 +/- 34 vs 305 +/- 40 pg/ml) were not affected. The implant tended to decrease serum testosterone (4.86 +/- 0.75 vs 7.66 +/- 1.51 ng/ml; P<0.10). In Exp. 3, LH was higher after zero implants than after four implants (279 +/- 7 vs 227 +/- 9 pg/ml; P<0.01), and LH after two implants was also higher than after four implants (263 +/- 7 pg/ml; P<0.01) in 14-wk-old boars in a Latin square design. Peak LH after 40 mug gonadotropin releasing hormone (GnRH) was less after two and four implants (1,100 +/- 126 and 960 +/- 167 pg/ml, respectively; P<0.01) than after zero implants (1,742 +/- 126 pg/ml). Slope of the first 20 min of LH response to GnRH was greater after zero implants (45.3 pg/min; P<0.05) than after either two or four implants (20.6 and 16.9 pg/min, respectively). Implant treatment decreased serum testosterone (P<0.025) but increased estradiol (P<0.10). Small changes in serum estradiol resulted in changes in LH. These changes in sample variance and mean LH were recognized by boars as different from normal because serum testosterone decreased. Changes in LH may result from estradiol's negative effect on pituitary responsiveness to endogenous GnRH because response to exogenous GnRH was depressed by estradiol.  相似文献   

13.
In ewes in the mid-luteal phase, LH pulse frequency (P less than 0.01) and amplitude (P less than 0.05) increased during a 24 h infusion of naloxone (0.5 mg/kg/h) compared to a 24 h infusion of vehicle (mean +/- s.e.m.; 0.25 +/- 0.03 vs 0.14 +/- 0.01 pulses/h and 0.84 +/- 0.08 vs 0.55 +/- 0.08 ng/ml serum, respectively). The increase in pulse amplitude was immediate, but was less (P less than 0.05) during the second 12 h, compared to the first 12 h, of naloxone infusion (0.52 +/- 0.14 vs 0.98 +/- 0.08 ng/ml serum). Oestradiol concentrations were higher (P less than 0.01) during naloxone than during control infusion (5.63 +/- 0.26 vs 4.13 +/- 0.15 pg/ml serum). In ovariectomized ewes in the breeding season, LH pulse frequency was lower (P less than 0.01) during a 24 h infusion of morphine (0.5 mg/kg/h) than during a 24 h infusion of vehicle (mean +/- s.e.m.; 1.17 +/- 0.08 vs 1.71 +/- 0.06 pulses/h). We conclude that long-term infusion of naloxone results in a sustained increase in LH pulse frequency but only a transient elevation in pulse amplitude. No effects on FSH secretion were noted. LH secretion was sensitive to morphine in the absence of ovarian steroids, suggesting that ovarian steroids are not required for the presence of functional opioid receptors capable of modulating LH release.  相似文献   

14.
Thirty crossbred bulls, 12 to 13 mo of age, were used to examine the relationship of testosterone and progesterone concentrations and testosterone: progesterone ratio to measurements of testicular function. Bulls were allotted to 1 of 2 groups based on scrotal circumferences (SC) as follows: the Small SC (n=20) group had scrotal circumference less than 28 cm while the Large SC (n=10) group had scrotal circumference greater than 28 cm. All bulls were administered GnRH (100 mug, im), and blood was obtained immediately prior to injection (t=0), 30 min after injection (t=30) and 2 to 3 h after injection (t=150). Serum was assayed for concentrations of testosterone and progesterone. Semen was evaluated for the percentage of morphologically normal spermatozoa. Testicular parenchyma was sectioned and stained, and 300 cross sections per testis of seminiferous tubules were examined under a light microscope and classified as either active (spermatocytes and spermatids present) or inactive (no spermatocytes or spermatids present). Although progesterone concentrations varied widely (range: 21 pg/ml to 1070 pg/ml), repeated measurements from individual bulls were highly correlated (r(2)=0.74) and did not change significantly (P > 0.1) in response to GnRH treatment. Small SC bulls had a higher percentage of inactive seminiferous tubules (P < 0.001) and a lower percentage morphologically normal spermatozoa (P < 0.001) than Large SC bulls, but no differences in testosterone or progesterone concentrations or in the ratio of testosterone: progesterone were detected. Mean serum testosterone concentration increased (P < 0.0001) by 30 min after GnRH treatment and continued to increase (P < 0.0001) through t=150 but did not differ (p > 0.1) between groups. Normal testosterone secretion in response to GnRH injection suggested that no biochemical lesions in the testosterone production pathway were present in bulls with very small scrotal circumference.  相似文献   

15.
The main objective of this study was to compare the effect of the presence of large follicles at the start of FSH treatment on the superovulatory response in ewes in the breeding and nonbreeding seasons. A second objective was to verify the effect on the superovulatory response of the presence of a corpus luteum at the start of the FSH treatment during the breeding season. Fifteen ewes in breeding season (October) and 14 in nonbreeding season (May-June) were treated with 40 mg FGA sponges (Chronogest) for 14 days, together with a single dose of 125 microg cloprostenol on Day 12, considering Day 0 as day of progestagen insertion. Superovulatory treatments consisted of eight decreasing doses (1.5 ml x 3, 1.25 ml x 2 and 1 ml x 3) of Ovagen twice daily from 60 h before to 24h after sponge removal. Ovarian structures were assessed by transrectal ultrasonography using a 7.5 MHz linear array probe. Luteal activity at progestagen insertion (Day 0) and presence of corpus luteum and of large follicles at first FSH dose (Day 12) were determined. There were no significant differences between the breeding season and nonbreeding season for ovulation rate (11.6+/-1.4 versus 11.6+/-1.3), number of recovered embryos (8.0+/-1.1 versus 9.6+/-1.3) or number of viable embryos (7.2+/-1.1 versus 5.8+/-1.2). During the breeding season, there were fewer recovered embryos in ewes with a large follicle (> or =6mm) at first FSH dose (6.9+/-1.1 versus 12.3+/-1.8, P<0.05) and fewer viable embryos (5.0+/-1.2 versus 10.5+/-0.5, P<0.05) than in ewes without such a follicle. During the nonbreeding season, however, there were no significant differences between ewes with or without a large follicle for either recovered (9.0+/-2.5 versus 11.3+/-1.2) or viable embryos (6.3+/-2.3 versus 8.1+/-1.2). Analysis of seasonal differences in ewes with a large follicle showed a lower number of recovered embryos in the breeding season (P<0.05) due to a lower recovery rate (65.7% versus 92.3%, P<0.05), since mean number of corpora lutea in response to the FSH treatment was similar (10.9+/-1.3 versus 10.0+/-2.5). These results indicate that, in sheep, the inhibitory effects of large follicles during the nonbreeding season are not as obvious as during the breeding season.  相似文献   

16.
Stress responses are thought to act within the hypothalamopituitary unit to impair the reproductive system, and the sites of action may differ between sexes. The effect of isolation and restraint stress on pituitary responsiveness to GnRH in sheep was investigated, with emphasis on possible sex differences. Experiments were conducted during the breeding season and the nonbreeding season. In both experiments, 125 ng of GnRH was injected i.v. every 2 h into hypothalamopituitary disconnected, gonadectomized rams and ewes on 3 experimental days, with each day divided into two periods. During the second period on Day 2, isolation and restraint stress was imposed for 5.5 h. Plasma concentrations of LH and cortisol were measured in samples of blood collected from the jugular vein. In the second experiment (nonbreeding season), plasma concentrations of epinephrine, norepinephrine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylglycol were also measured. In both experiments, there was no effect of isolation and restraint stress on plasma concentrations of cortisol in either sex. During the breeding season, there was no effect of isolation and restraint stress on plasma concentrations of LH in either sex. During the nonbreeding season, the amplitude of the first LH pulse after the commencement of stress was significantly reduced (P < 0.05) in rams and ewes. In the second experiment, during stress there was a significant increase (P < 0.05) in plasma concentrations of epinephrine in rams and ewes and significantly higher (P < 0.05) basal concentrations of norepinephrine in ewes than in rams. These results suggest that in sheep stress reduces responsiveness of the pituitary gland to exogenous GnRH during the nonbreeding season but not during the breeding season, possibly because of mediators of the stress response other than those of the hypothalamus-pituitary-adrenal gland axis.  相似文献   

17.
Reproductive performance and fetal growth was determined in GnRH (4 microg synthetic GnRH agonist, Receptal) administered (i.m.) to ewes on day 12 post-mating (n = 103) compared to control ewes (n = 97) during the breeding season. Plasma progesterone and LH concentrations were analyzed. A total of 13 ewes was slaughtered on day 45 of pregnancy (six from control, seven from GnRH treated groups). GnRH administration on day 12 post-mating increased plasma progesterone concentration (4.39+/-0.25 ng/ml) compared to control group (3.43+/-0.15 ng/ml) on days 13-15 post-mating (P < 0.01). GnRH administration also increased plasma LH concentration between 1 and 4 h after GnRH administration (P < 0.01). Pregnancy rate was higher in GnRH treated group (84%) than control (66%) group (P < 0.05). The ewes in GnRH administered group had more twins (P < 0.05) than those in control group. The ovarian weights (P < 0.05) and the number of corpora lutea (CL) (P < 0.01) were greater in ewes slaughtered on day 45 of pregnancy in GnRH treated group than those in control group. GnRH administration on day 12 post-mating did not have any effect on products of conception at day 45 of pregnancy except on crown-rump length (CRL) of fetuses and cotyledon weight. CRL of fetuses and cotyledon weight in GnRH treated group was higher than those in control group (P < 0.05). In conclusion GnRH administration improved reproductive performance of ewes when administered on day 12 post-mating probably through its beneficial effect on embryo survival by enhancing luteal function, but not through stimulating fetal growth.  相似文献   

18.
Three experiments were conducted during the operational breeding season to confirm that continuous, subcutaneous infusion of low-dose GnRH would not disrupt established estrous cycles (Experiment 1), and test the hypotheses that a similar treatment would stimulate secretion of LH and induce development of ovulatory follicles in persistently anovulatory mares (Experiments 2 and 3). Treatment with GnRH (5 microg/h) increased (P<0.001) serum P4 during the luteal phase (7.7+/-0.5 versus 6.4+/-0.5 ng/mL), tended to increase serum LH (2.6+/-0.27 versus 1.9+/-0.25 ng/mL), and did not modify interovulatory intervals. In Experiment 2, GnRH treatment (2.5-5 microg/h) of persistently anovulatory mares increased (P<0.001) serum LH compared to controls (0.5+/-0.08 versus 0.1+/-0.03 ng/mL), with all GnRH-treated and no Control mares ovulating. Mares exhibiting Delayed Recrudescence (n=29) or Lactational Anovulation (n=18), were assigned randomly in Experiment 3 to receive either (1) GnRH/GnRH (n=23); 2.5 microg GnRH/h for 14 d (Period I) and 5 microg/h during the subsequent 28 d (Periods II and III); or (2) Control/GnRH (n=24); no treatment during Period I (control period) and GnRH treatments as in 1 during Periods II and III. Percentage of mares ovulating and pregnant during Period I was greater (P<0.05) for GnRH-treated than Control mares. Thereafter, cumulative ovulation frequency (85%), pregnancy (72%) and cycles/conception (1.3+/-0.2) were similar between groups; however, interval to conception was reduced (P<0.01) by 10.3 d in GnRH/GnRH compared to Control/GnRH.  相似文献   

19.
Blood samples were taken once per week for 4-7 weeks from 59 buffalo calves in 14 age groups, 1-2 months apart. Hormones were quantified by validated radioimmunoassays. Values of androstenedione and testosterone were low at birth (141.3 +/- 33.5 pg/ml and 18.0 +/- 2.9 pg/ml, respectively; mean +/- s.d.). Serum androstenedione concentrations gradually increased from birth until 8 months of age and declined (P less than 0.05) thereafter, whereas mean testosterone values were low up to 8 months and then significantly (P less than 0.05) increased as age advanced. LH concentrations averaged 2.12 +/- 0.47 ng/ml at birth. Thereafter, a decline in LH values was followed by an increase between 6 and 15 months of age. We conclude that, in buffalo bull calves, the pubertal period occurs from about 8 to 15 months of age. For pubertal buffalo bulls 15-17 months of age, serum concentrations of androstenedione, testosterone and LH were 156.9 +/- 54.6 pg/ml, 208.4 +/- 93.8 pg/ml and 2.10 +/- 0.70 ng/ml, respectively.  相似文献   

20.
Seasonal changes in the hypothalamic-hypophyseal axis were investigated using tissue from 49 light-horse mares, of mixed breeding. Hypothalamic and pituitary tissues were collected at 5 intervals throughout the years 1981 and 1982, representing midbreeding season (July, n = 10), transition out of the breeding season (October, n = 11), midanestrus (December, n = 8), transition into the breeding season (March, n = 10), and again in the following midbreeding season (July, n = 10). The hypothalamic region was dissected into preoptic area, body and median eminence. Gonadotropin-releasing hormone (GnRH) was extracted from hypothalamic samples with methanol-formic acid and quantified by radioimmunoassay. The anterior pituitary was homogenized and receptors for GnRH were quantified in a crude membrane fraction. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in the resulting supernatant. Content of GnRH in each of the 3 hypothalamic areas varied with season (P less than 0.01) and was lowest during midanestrus (P less than 0.05). There was no effect of season (P greater than 0.01) on either concentration or total number of receptors for GnRH, or concentration of FSH in the anterior pituitary. Concentrations of LH in the anterior pituitary varied with season (P less than 0.001). Means (+/- SEM) for the 5 collection times were 15.5 +/- 2.7, 9.7 +/- 2.4, 2.3 +/- 0.5, 2.7 +/- 0.4 and 11.7 +/- 1.5 microgram LH/mg anterior pituitary, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号