首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.  相似文献   

2.
The mudfish genus Neochanna (Osmeriformes: Galaxiidae) contains six species that exhibit varying degrees of morphological and ecological adaptation to life in swampy conditions. Here, we present the first molecular phylogenetic analysis (16S rRNA+cytochrome b; 1681bp) of the entire genus to (1) test for monophyly of Australian and New Zealand taxa and (2) elucidate morphological character evolution. In addition, we analyse a matrix of 21 morphological characters to test for congruence between mitochondrial DNA and morphology, and to examine total evidence under a Bayesian framework. Molecular data indicate that the diadromous Tasmanian mudfish, N. cleaveri, is sister to a clade of five non-diadromous New Zealand mudfishes. Mapping of morphological characters onto the molecular phylogeny suggests an evolutionary transition from a plesiomorphic "stream" galaxiid morphotype to a more specialised "anguilliform" galaxiid morphotype. Pelvic fins have become increasingly reduced and dorsal, anal, and caudal fins are increasingly confluent. Associated with these changes are elongated nostrils, reduced eyes, and increased anterior cranial ossification. Morphological and total evidence analyses yield similar or identical topologies, respectively. The phylogenetic distribution of diadromy in Neochanna is consistent with a single loss of this character state in New Zealand. However, the strong sister relationship (3.6% divergent; 100% bootstrap support) detected between non-diadromous N. burrowsius (South Island, NZ) and N. rekohua (Chatham Islands) indicates geologically recent dispersal across 850km of ocean. Diadromy may therefore have been retained in the common ancestor of these two mudfish species, and subsequently lost from both lineages.  相似文献   

3.
The radial symmetric cnidarians are regarded as being close to the common metazoan ancestor before bilaterality evolved. It is proposed that a large fraction of the body of this gastrula-like organism gave rise to the head of more evolved organisms. The trunk was added later in evolution from an unfolding of a narrow zone between the tentacles and the blastoporus. This implies that, counter intuitively, the foot of the hydra corresponds to the most anterior part (forebrain and heart) while the opening of the gastric column gave rise to the anus. Two fundamentally different modes of midline formation evolved. In vertebrates, the organiser attracts cells from the both sides of the marginal zone. These leave the organiser as a unified band. The midline is formed sequentially from anterior to posterior. In insects, the midline forms opposite a dorsal repelling center, i.e., on the ventral side. This can occur more or less simultaneously over the whole anteroposterior extension.  相似文献   

4.
Hox genes and the evolution of the arthropod body plan   总被引:1,自引:0,他引:1  
In recent years researchers have analyzed the expression patterns of the Hox genes in a multitude of arthropod species, with the hope of understanding the mechanisms at work in the evolution of the arthropod body plan. Now, with Hox expression data representing all four major groups of arthropods (chelicerates, myriapods, crustaceans, and insects), it seems appropriate to summarize the results and take stock of what has been learned. In this review we summarize the expression and functional data regarding the 10 arthropod Hox genes: labial proboscipedia, Hox3/zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B. In addition, we discuss mechanisms of developmental evolutionary change thought to be important for the emergence of novel morphological features within the arthropods.  相似文献   

5.
6.
Phylogenetic, morphological, and developmental data concerning the Arthropoda are reviewed and discussed with the aim of reconstructing the ancestral body plan of the mandibulate arthropods (Myriapoda, Hexapoda, Crustacea). Comparative morphology as well as embryology of malacostracans and hexapods (cell-lineages, patterns of mitotic domains, patterns of en-stripe formation, expression zones of pair-rule, homeotic, and gap-like genes) suggest that (a) the basic boundary subdividing the mandibulate body into the primary embryonic regions, anterior protocephalon and posterior protocorm, runs anteriorly to parasegment PS1 (=within the mandibular segment); (b) protocephalon (pregnathal region) probably is not a unitary body region; (c) maxillary segments are closely related to the postgnathal trunk segments; (d) the “typical” mandibulate head (pregnathal-mandibular-maxillary) is not developed in all Mandibulata and has evolved several times in parallel; and (e) postcephalic tagmosis is much less conserved, and probably more recent, than tagmosis of more anterior areas. The arachnomorphan anterior tagma, the prosoma, is compared with the hypothesized ancestral mandibulate head.  相似文献   

7.
Hybridisations between related species with divergent ontogenies can provide insights into the bases for evolutionary change in development. One example of such hybridisations involves sea urchin species that exhibit either standard larval (pluteal) stages or those that develop directly from embryo to adult without an intervening feeding larval stage. In such crosses, pluteal features were found to be restored in fertilisations of the eggs of some direct developing sea urchins (Heliocidaris erythrogramma) with the sperm of closely (Heliocidaris tuberculata) and distantly (Pseudoboletia maculata) related species with feeding larvae. Such results can be argued to support the punctuated equilibrium model—conservation in pluteal regulatory systems and a comparatively rapid switch to direct development in evolution. 1 , 1 Generation of hybrids between distantly related direct developers may, however, indicate evolutionary convergence. The ‘rescue’ of pluteal features by paternal genomes may require maternal factors from H. erythrogramma because the larva of this species has pluteal features. In contrast, pluteal features were not restored in hybridisations with the eggs of Holopneustes purpurescens, which lacks pluteal features. How much of pluteal development can be lost before it cannot be rescued in such crosses? The answer awaits hybridisations among indirect and direct developing sea urchins differing in developmental phenotype, in parallel with investigations of the genetic programs involved. BioEssays 26:343–347, 2004. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
Despite the potential use of gastropod embryos in basic and applied research, little is known about their protein expression. We examined, for the first time, changes in proteomic profile during embryonic development of Pomacea canaliculata from an embryo without a shell (stage II) to an embryo with a fully formed shell (stage III) to understand the roles that proteins play in critical developmental events, such as the formation of shell, operculum and heart, and the differentiation of head and foot. To analyze protein expression during development, we used 2‐DE to detect, MS to analyze, and de novo peptide sequencing followed by MS‐BLAST to identify the proteins. The de novo cross‐species protein identification method was adopted because of a lack of genomic and proteomic data in the whole class of Gastropoda. 2‐DE detected approximately 700 protein spots. Among the 125 spots that were abundant, 52% were identified, a marked improvement over the conventional direct MS‐BLAST method. These proteins function in perivitelline fluid utilization, shell formation, protein synthesis and folding, and cell cycle and cell fate determination, providing evidence to support that this embryonic period is a period of dynamic protein synthesis and metabolism. The data shall provide a basis for further studies of how gastropod embryos respond to natural and human‐induced changes in the environment.  相似文献   

9.
The neo-Darwinian paradigm benefits from the assumption that phenotypic variation is gradual and that phenotype and genotype have a relatively simple relationship. These assumptions are historically inherited from the times of the neo-Darwinian synthesis and, consequently, do not include present understanding about development. In this study, understanding about the dynamics of pattern formation is used to explore to that extent phenotypic variation can be expected to be gradual and simply related to molecular variation. Variation in simple phenotypes seems to fit neo-Darwinian assumptions but variation in complex phenotypes does not. Instead, variation in complex phenotypes would have a tendency to relatively less gradual evolution, even at microevolutionary time scales, that would make phylogenetic reconstructions more difficult. In addition, they will have a tendency to exhibit specific trends in innovation rates over group radiations with early accelerations and late decelerations. This work also explores further consequences of these results in our understanding of phenotypic evolution.  相似文献   

10.
An antibody was used to detect antigens in zebrafish that appear to be homologous to the frog homeodomain-containing protein XlHbox 1. These antigens show a restricted expression in the anteroposterior axis and an anteroposterior gradient in the pectoral fin bud, consistent with the distribution of XlHbox 1 protein in frog and mouse embryos. In the somitic mesoderm, a sharp anterior limit of expression coincides exactly with the boundary between somites 4 and 5, and the protein level fades out posteriorly. A similar, graded expression of the antigen is seen within the series of Rohon-Beard sensory neurons of the CNS. We also immunostained the mutant spt-1 ('spadetail'), in which the trunk mesoderm is greatly depleted and disorganized in the region of XlHbox 1 expression. The defects stem from misdirected cell movements during gastrulation, but nervertheless, newly recruited cells that partially refill the trunk mesoderm express the antigen within the normal span of the anteroposterior axis. This finding suggests that the mutation does not delete positional information required for activation of the XlHbox 1 gene.  相似文献   

11.
12.
Major developmental innovations have been associated with adaptive radiations that have allowed particular groups of organisms to occupy empty ecospace. Well-known developmental novelties associated with the conquest of new habitats include the evolution of the tetrapode limb, allowing the radiation of vertebrates into a terrestrial habitat, and formation of insect wings that permitted their dispersal into the air. However, an understanding of the evolutionary forces and molecular mechanisms behind developmental novelties still remains tenuous. A little-studied adaptive radiation in insects from the developmental perspective is the evolution of parasitism. The parasitic lifestyle has allowed parasitic insects to occupy a novel ecological niche where they have evolved a plethora of life history strategies and modes of embryogenesis, developing on or within the body of the host. One of the most striking adaptations to development within the body of the host includes polyembryonic development, where certain wasps form clonally up to 2000 embryos from a single egg. Taking advantage of well-established insect phylogeny, techniques developed in a model insect, the fruit fly, and a wealth of knowledge in comparative insect embryology, we are starting to tease apart the evolutionary events that have led to this novel mode of development in insects.  相似文献   

13.
Evolution of gene regulatory networks controlling body plan development   总被引:1,自引:0,他引:1  
Peter IS  Davidson EH 《Cell》2011,144(6):970-985
Evolutionary change in animal morphology results from alteration of the functional organization of the gene regulatory networks (GRNs) that control development of the body plan. A major mechanism of evolutionary change in GRN structure is alteration of cis-regulatory modules that determine regulatory gene expression. Here we consider the causes and consequences of GRN evolution. Although some GRN subcircuits are of great antiquity, other aspects are highly flexible and thus in any given genome more recent. This mosaic view of the evolution of GRN structure explains major aspects of evolutionary process, such as hierarchical phylogeny and discontinuities of paleontological change.  相似文献   

14.
Higher-plant chloroplast NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) is composed of two different nuclear-encoded subunits, GAPA and GAPB, forming the highly active heterotetrameric A2B2 enzyme. The main difference between these two subunits is a C-terminal extension of about 30 amino acid residues of GAPB. We present cDNA clones for a nuclear-encoded chloroplast protein from pea, spinach and tobacco, which we have named CP12. The mature protein consists of only 74, 75 and 76 amino acid residues, respectively and contains two domains with significant homology to the C-terminal extension of GAPB. Affinity chromatography approaches reveal also a specific interaction between CP12 and chloroplast GAPDH. Northern blot analysis indicates that CP12 is, like plastid GAPDH, expressed in green and also in etiolated leaves. Further homology is observed between CP12 and ORF3, an open reading frame located in the hox gene cluster of Anabaena variabilis. This gene cluster encodes the subunits of the bidirectional NADP+-dependent [NiFeS] dehydrogenase. We propose therefore a common evolutionary origin of CP12 and higher-plant chloroplast GAPDH subunit GAPB from the cyanobacterial ORF3.  相似文献   

15.
16.
17.
Birds can be subdivided into two large superordinal assemblages based on differences in the dorsal horn of the spinal grey matter. Palaeognaths (i.e. ratites and tinamous), along with a few other orders of neognathous birds, exhibit the primitive dorsal horn state characteristic of other amniotes wherein cutaneous nerves form a single map of the body surface across the dorsal horn. In contrast, the vast majority of neognaths exhibit a novel, distinctly bifid dorsal horn wherein cutaneous nerves form not one, but two separate maps of the skin, each lying side-by-side. This unusual dorsal horn organization, which has been highly conserved and represents the derived state in birds, may identify a novel, major avian clade. These findings shed new light on historically problematic taxa and the early evolutionary branching sequence among living birds. Most notably, they reveal that the traditional orders Gruiformes, Columbiformes, Cuculiformes and Piciformes are unnatural assemblages. Further, in addition to palaeognaths, these findings suggest that most gruiforms, including buttonquails and mesites, as well as pigeons, cuckoos, woodpeckers and songbirds, represent ancient lineages whose ancestry predates the majority of ''modern'' birds. The phylogeny of living birds may thus be likened more to a dense bush than the traditional tree, with more than half of all living species arising from a basal side branch.  相似文献   

18.
The fossil echinoderm Palaeocucumaria, from the early Devonian Hunsrück Slate of southwestern Germany, has been studied using both traditional techniques and X‐ray microtomography, and its anatomy clarified. Phylogenetic analysis shows that it is a stem‐group holothurian with a combination of characters that help understand how the modern (crown‐group) holothurian body plan developed. Echinoids and holothurians have evolved along different paths, by differential growth of the larval‐ and rudment‐derived body regions. Palaeocucumaria shows that late stem‐group holothurians had a water vascular organization with a single external madreporite and calcified stone canal leading to the aboral end of the peripharyngeal coelom, and five primary radial water vessels that gave rise to tentacle‐like tube‐feet. This fossil data, in combination with a molecular phylogeny based on 18 s‐like rRNA gene sequence data, is used to order evolutionary steps in the making of the crown‐group holothurian body plan. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 670–681.  相似文献   

19.
Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号