首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bub3 is one of at least six proteins that transmit the spindle assembly checkpoint signal. These proteins delay cell cycle progression from metaphase to anaphase in response to attachment defects between kinetochores and spindle microtubules and to tension defects between sister chromatids. To explore the molecular interactions mediated by Bub3, we have determined the crystal structure of the Saccharomyces cerevisiae protein Bub3p at 2.35 A resolution. Bub3p is a seven-blade beta-propeller, although its sequence diverges from that of other WD40 family members. Several loops are substantially elongated, but extra domains or insertions are not present at the termini. In particular, two extended loops project from the top face of the propeller, forming a cleft. Amino acid residues across the top face and one aspect of the lateral surface (spanning blades 5-6) are highly conserved among Bub3 proteins. We propose that these conserved surfaces are the loci for key interactions with conserved motifs in spindle checkpoint proteins Bub1 and Mad3/BubR1. Comparison of the Bub3 sequence to the WD40 protein, Rae1, shows high sequence conservation along the same surfaces. Rae1 interaction with Bub1 is, therefore, likely to involve a similar mode of binding.  相似文献   

2.
Proper assembly of kinetochores (KTs) during mitosis is required for bipolar attachment of spindle microtubules (MTs) and the accumulation of spindle assembly checkpoint (SAC) components. Here we show that testis-expressed protein 14 (Tex14), which has been implicated in midbody function, is recruited to KTs by Plk1 in a Cdk1-dependent manner during early mitosis. Exclusion of Tex14 from kinetochores results in an inability to efficiently localize outer KT components, impaired KT-MT attachment, chromosome congression defects, and whole-chromosome instability. In addition, we demonstrate that phosphorylation of Tex14 by Plk1 during metaphase promotes APC(Cdc20)-mediated Tex14 degradation. Inhibition of this phosphorylation event causes retention of Tex14 at KTs and results in delayed metaphase-to-anaphase transition and chromosome segregation defects. Our findings identify Tex14 as an important mediator of KT structure and function and the fidelity of chromosome separation.  相似文献   

3.
Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability.  相似文献   

4.
Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1–77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1–Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.  相似文献   

5.
BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos.  相似文献   

6.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.  相似文献   

7.
Bub3p is a protein that mediates the spindle checkpoint, a signaling pathway that ensures correct chromosome segregation in organisms ranging from yeast to mammals. It is known to function by co-localizing at least two other proteins, Mad3p and the protein kinase Bub1p, to the kinetochore of chromosomes that are not properly attached to mitotic spindles, ultimately resulting in cell cycle arrest. Prior sequence analysis suggested that Bub3p was composed of three or four WD repeats (also known as WD40 and beta-transducin repeats), short sequence motifs appearing in clusters of 4-16 found in many hundreds of eukaryotic proteins that fold into four-stranded blade-like sheets. We have determined the crystal structure of Bub3p from Saccharomyces cerevisiae at 1.1 angstrom and a crystallographic R-factor of 15.3%, revealing seven authentic repeats. In light of this, it appears that many of these repeats therefore remain hidden in sequences of other proteins. Analysis of random and site-directed mutants identifies the surface of Bub3p involved in checkpoint function through binding of Bub1p and Mad3p. Sequence alignments indicate that these surfaces are mostly conserved across Bub3 proteins from diverse species. A structural comparison with other proteins containing WD repeats suggests that these folds may bind partner proteins using similar surface areas on the top and sides of the propeller. The sequences composing these regions are the most divergent within the repeat across all WD repeat proteins and could potentially be modulated to provide specificity in partner protein binding without perturbation of the core structure.  相似文献   

8.
The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells depleted of dynein light intermediate chain 1 (LIC1) delay in metaphase with increased interkinetochore distances; dynein remains intact, localised and functional. The checkpoint proteins Mad1/2 and Zw10 localise to kinetochores under full tension, whereas BubR1 is diminished at kinetochores. Metaphase delay and increased interkinetochore distances are suppressed by depletion of Mad1, Mad2 or BubR1 or by re‐expression of wtLIC1 or a Cdk1 site phosphomimetic LIC1 mutant, but not Cdk1‐phosphorylation‐deficient LIC1. When the checkpoint is activated by microtubule depolymerisation, Mad1/2 and BubR1 localise to kinetochores. We conclude that a Cdk1 phosphorylated form of LIC1 is required to remove Mad1/2 and Zw10 but not BubR1 from kinetochores during spindle assembly checkpoint silencing.  相似文献   

9.
During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore-microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest.  相似文献   

10.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8 and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientationdeficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. the spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.Key words: spindle assembly checkpoint, kinetochore-microtubule attachments, biorientation, DAM1-765  相似文献   

11.
The spindle checkpoint delays anaphase onset in cells with mitotic spindle defects. Here, we show that Chk1, a component of the DNA damage and replication checkpoints, protects vertebrate cells against spontaneous chromosome missegregation and is required to sustain anaphase delay when spindle function is disrupted by taxol, but not when microtubules are completely depolymerized by nocodazole. Spindle checkpoint failure in Chk1-deficient cells correlates with decreased Aurora-B kinase activity and impaired phosphorylation and kinetochore localization of BubR1. Furthermore, Chk1 phosphorylates Aurora-B and enhances its catalytic activity in vitro. We propose that Chk1 augments spindle checkpoint signaling and is required for optimal regulation of Aurora-B and BubR1 when kinetochores produce a weakened signal. In addition, Chk1-deficient cells exhibit increased resistance to taxol. These results suggest a mechanism through which Chk1 could protect against tumorigenesis through its role in spindle checkpoint signaling.  相似文献   

12.
The spindle checkpoint delays the metaphase to anaphase transition in response to defects in kinetochore-microtubule interactions in the mitotic apparatus (see [1] [2] [3] [4] for reviews). The Mad and Bub proteins were identified as key components of the spindle checkpoint through budding yeast genetics [5] [6] and are highly conserved [3]. Most of the spindle checkpoint proteins have been localised to kinetochores, yet almost nothing is known about the molecular events which take place there. Mad1p forms a tight complex with Mad2p [7], and has been shown to recruit Mad2p to kinetochores [8]. Similarly, Bub3p binds to Bub1p [9] and may target it to kinetochores [10]. Here, we show that budding yeast Mad1p has a regulated association with Bub1p and Bub3p during a normal cell cycle and that this complex is found at significantly higher levels once the spindle checkpoint is activated. We find that formation of this complex requires Mad2p and Mps1p but not Mad3p or Bub2p. In addition, we identify a conserved motif within Mad1p that is essential for Mad1p-Bub1p-Bub3p complex formation. Mutation of this motif abolishes checkpoint function, indicating that formation of the Mad1p-Bub1p-Bub3p complex is a crucial step in the spindle checkpoint mechanism.  相似文献   

13.
Cytoplasmic dynein is the motor protein responsible for the intracellular transport of various organelles and other cargoes toward microtubule minus ends. However, it remains to be determined how dynein is regulated to accomplish its varied roles. The dynein complex contains six subunits, including three classes of light chains. The two isoforms of the DYNLT (Tctex1) family of light chains, DYNLT1 and DYNLT3, have been proposed to link dynein to specific cargoes. However, no specific binding partner had been found for the DYNLT3 light chain. We find that DYNLT3 binds to Bub3, a spindle checkpoint protein. Bub3 binds exclusively to DYNLT3 and not to the other dynein light chains. Glutathione S-transferase pull-down and co-immunoprecipitation assays demonstrate that Bub3 interacts with the cytoplasmic dynein complex. DYNLT3 is present on kinetochores at prometaphase, but not later mitotic stages, demonstrating that this dynein light chain, like Bub3 and other checkpoint proteins, is depleted from the kinetochore during chromosome alignment. Knockdown of DYNLT3 with small interference RNA increases the mitotic index, in particular, the number of cells in prophase/prometaphase. These results demonstrate that dynein binds directly to a component of the spindle checkpoint complex through the DYNLT3 light chain. Thus, DYNLT3 contributes to dynein cargo binding specificity. These data also suggest that the subpopulation of dynein, containing the DYNLT3 light chain, may be important for chromosome congression, in addition to having a role in the transport of checkpoint proteins from the kinetochore to the spindle pole.  相似文献   

14.
Budding yeast Mps1p kinase has been implicated in both the duplication of microtubule-organizing centers and the spindle assembly checkpoint. Here we show that hMps1, the human homolog of yeast Mps1p, is a cell cycle-regulated kinase with maximal activity during M phase. hMps1 localizes to kinetochores and its activity and phosphorylation state increase upon activation of the mitotic checkpoint. By antibody microinjection and siRNA, we demonstrate that hMps1 is required for human cells to undergo checkpoint arrest in response to microtubule depolymerization. In contrast, centrosome (re-)duplication as well as cell division occur in the absence of hMps1. We conclude that hMps1 is required for the spindle assembly checkpoint but not for centrosome duplication.  相似文献   

15.
In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.  相似文献   

16.
The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co‐activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind stably to the APC/C. Whether MCC formation per se is sufficient for a functional SAC or MCC association with the APC/C is required remains unclear. Here, we analyze the role of two conserved motifs in Cdc20, IR and C‐Box, in binding of the MCC to the APC/C. Mutants in both motifs assemble the MCC normally, but IR motif integrity is particularly important for stable binding to the APC/C. Cells expressing Cdc20 with a mutated IR motif have a compromised SAC, as uninhibited Cdc20 can compete with the MCC for APC/C binding and activate it. We thus show that stable MCC association with the APC/C is critical for a functional SAC.  相似文献   

17.
Both the DNA damage response (DDR) and the mitotic checkpoint are critical for the maintenance of genomic stability. Among proteins involved in these processes, the ataxia–telangiectasia mutated (ATM) kinase is required for both activation of the DDR and the spindle assembly checkpoint (SAC). In mitosis without DNA damage, the enzymatic activity of ATM is enhanced; however, substrates of ATM in mitosis are unknown. Using stable isotope labeling of amino acids in cell culture mass spectrometry analysis, we identified a number of proteins that can potentially be phosphorylated by ATM during mitosis. This list is highly enriched in proteins involved in cell cycle regulation and the DDR. Among them, we further validated that ATM phosphorylated budding uninhibited by benzimidazoles 3 (Bub3), a major component of the SAC, on serine 135 (Ser135) both in vitro and in vivo. During mitosis, this phosphorylation promoted activation of another SAC component, benzimidazoles 1. Mutation of Bub3 Ser135 to alanine led to a defect in SAC activation. Furthermore, we found that ATM-mediated phosphorylation of Bub3 on Ser135 was also induced by ionizing radiation-induced DNA damage. However, this event resulted in independent signaling involving interaction with the Ku70–Ku80–DNA-PKcs sensor/kinase complex, leading to efficient nonhomologous end-joining repair. Taken together, we highlight the functional significance of the crosstalk between the kinetochore-oriented signal and double-strand break repair pathways via ATM phosphorylation of Bub3 on Ser135.  相似文献   

18.
PARK2, an ubiquitin ligase closely correlated with Parkinson's disease and cancer, has been shown to accumulate at centrosomes to ubiquitinate misfolded proteins accumulated during interphase. In the present study, we demonstrated that PARK2 can also localize to centrosomes in mitosis and that the protein does not fluctuate through the S- to M-phase. A C-terminal truncation of PARK2 resulted in a spindle assembly checkpoint defect, characterized by HeLa cells able to bypass mitotic arrest induced by nocodazole and form multinucleated cells when overexpressing the C-terminal truncated PARK2 protein. The spindle assembly checkpoint defect may be due to a change in a biochemical or structural property of PARK2 caused by the C-terminal truncation, resulting in a loss of self-interaction between PARK2 proteins.  相似文献   

19.
PARK2, an ubiquitin ligase closely correlated with Parkinson's disease and cancer, has been shown to accumulate at centrosomes to ubiquitinate misfolded proteins accumulated during interphase. In the present study, we demonstrated that PARK2 can also localize to centrosomes in mitosis and that the protein does not fluctuate through the S- to M-phase. A C-terminal truncation of PARK2 resulted in a spindle assembly checkpoint defect, characterized by HeLa cells able to bypass mitotic arrest induced by nocodazole and form multinucleated cells when overexpressing the C-terminal truncated PARK2 protein. The spindle assembly checkpoint defect may be due to a change in a biochemical or structural property of PARK2 caused by the C-terminal truncation, resulting in a loss of self-interaction between PARK2 proteins.  相似文献   

20.
The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301-340 and 439-480, designated as MAD1(301-340) and MAD1(439-480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301-340) and MAD1(439-480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号