首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-activating factor (PAF) is a powerful mediator of inflammation. We have recently described a potential role for PAF in immune reactions, as it inhibits T cell proliferation and IL-2 production in response to mitogens. To further define the mechanism through which this inhibition is exerted, we used a coculture system in which PBML are preincubated with increasing concentrations of PAF for 24 h, followed by washing, treatment with mitomycin C and addition to fresh autologous PBML stimulated with PHA. In this context, a significant (40 to 60%) inhibition of proliferation was observed. In parallel, PAF-pre-treated cells induced a reduction (30 to 50%) of IL-2 production by PHA-stimulated lymphocytes. The PAF receptor antagonist BN52021 could partially block the PAF-induced suppressor cell activity, but also showed some suppressor cell-inducing properties of its own (20 to 30%). The expression of suppressor cell function during the co-culture could be partially abrogated by the inclusion of indomethacin, suggesting that cycloxygenase metabolites of arachidonic acid were involved in this phase of suppression. When PBML were fractionated into monocytes, lymphocytes, or T cell subsets before pre-incubation with PAF, indomethacin-sensitive suppressor cell function was generated in the monocyte population. Monocyte-depleted lymphocytes showed slight helper effect, whereas CD8+ T cells were induced to become indomethacin-resistant suppressor cells. CD4+ T cells, in contrast, were activated to exert very marked helper effect. When incubated with PAF for 24 h, monocyte-depleted lymphocytes showed a 30% decrease in CD4+ T cell numbers and a 50% increase in CD8+ T cell numbers. Our data suggest a novel immunoregulatory role for PAF and potentially important interactions of this lipid mediator of inflammation with lymphocyte and monocyte functions.  相似文献   

2.
Abstract In a previous study, we observed that the purified substance Salmonella typhimurium -derived inhibitor of T-cell proliferation (STI) had an immunosuppressive effect, demonstrated as the suppression of mitogenic lectin-induced proliferation of murine spleen cells. In the present study, we confirmed the immunosuppressive effect of STI, which suppressed the proliferation of murine splenic T-lymphocytes activated with the anti-CD3 antibody (Ab) and phorbol 12-myristate-13 acetate (PMA) and this phenomenon was accompanied by augmentation of interferon-γ (IFN-γ) secretion and inhibition of interleukin-2 (IL-2) secretion. Furthermore, the augmentation of IFN-γ secretion caused IL-2 receptor α chain (IL-2R α) over expression on T-cells. However, the addition of an anti-IFN-γ Ab and recombinant IL-2 (rIL-2) did not reverse the suppressed T-cell proliferation, although the level of IL-2R α expression on T-cells recovered to around normal. Furthermore, Western blotting using an anti-phosphotyrosine Ab showed that IL-2R-mediated tyrosine phosphorylation of protein substrates in T-cells was inhibited by incubation with STI for 48 h and this inhibition was not reversed by adding the anti-IFN-γ Ab and rIL-2. These results suggest that STI-induced suppression of T-cell proliferation involves a defect in IL-2R function and/or IL-2 signaling pathway in T-cells.  相似文献   

3.
During pregnancy, the endometrium of the ewe secretes large amounts of a progesterone-induced protein of the serpin superfamily of serine proteinase inhibitors called ovine uterine serpin (OvUS). This protein inhibits lymphocyte proliferation in response to concanavalin A (ConA), phytohemagglutinin (PHA), or mixed lymphocyte reaction. The purpose of these experiments was to characterize the mechanism by which OvUS inhibits lymphocyte proliferation. Ovine US caused dose-dependent inhibition of lymphocyte proliferation induced by phorbol myristol acetate (PMA), an activator of protein kinase C. The PHA-induced increase in CD25 expression was inhibited in peripheral blood mononuclear leukocytes (PBML) by OvUS. However, no effect of OvUS on Con A-induced expression of CD25 was observed. Further analysis using two-color flow cytometry revealed that OvUS inhibited ConA-induced expression of CD25 in gammadelta-TCR- cells but not gammadelta-TCR+ cells. Stimulation of PBML for 14 hr with ConA resulted in an increase in steady state amounts of interleukin-2 (IL-2) mRNA that was not inhibited by OvUS. Ovine US was also inhibitory to lymphocyte proliferation induced by human IL-2. Results suggest that OvUS acts to inhibit lymphocyte proliferation by blocking the upregulation of the IL-2 receptor and inhibiting IL-2-mediated events. Lack of an effect of OvUS on ConA-stimulated CD25 expression in gammadelta-TCR+ cells may reflect a different mechanism of activation of these cells or insensitivity to inhibition by OvUS.  相似文献   

4.
W P Chan  J V Levy 《Prostaglandins》1991,42(4):337-342
Impedance aggregometry was used to evaluate the potency of anti-platelet agents on Platelet Activating Factor (PAF)--induced platelet aggregation in citrated human whole blood. Drugs were tested for ability to inhibit maximum aggregation to PAF. Dose response curves were obtained and the concentration of drug producing 50% inhibition of maximum aggregation (ED50) determined. ED50's (microM) for specific PAF antagonists WEB 2086, Ro 19-3704, FR-900452, BN 52021, L-652,731, CV 3988, WEB 2118 and 48740 RP are: 0.39, 2.4, 4.7, 19.5, 21.0, 5.32, 161.0, 924.0, respectively. ED50's for non-specific PAF antagonists, diltiazem, propranolol, ketotifen, procaine HCL, and lidocaine HCL are: 38.0, 56.0, 250.0, 513.0 and 768.0, respectively. Ibuprofen was inactive at 2300 microM. Results are consistent with concept that there are specific receptors on platelets mediating PAF-induced aggregation in whole blood. Aggregation is inhibited potently by specific and competitive PAF receptor antagonists. Whole blood aggregometry may be a valid method for predicting in vivo activity of PAF antagonists.  相似文献   

5.
In a previous study we observed that neutrophils respond with a rapid rise in [Ca2+]i during adherence to cytokine-activated endothelial cells (EC), caused by EC membrane-associated platelet-activating factor (PAF). In the present study, we investigated whether this form of PAF was important in neutrophil adherence and migration across monolayers of rIL-1 beta- or rTNF alpha-prestimulated EC. PAF receptor antagonists prevented neutrophil migration across cytokine-pretreated EC by approximately 60% (P less than 0.005) without interfering with the process of adherence. The antagonists WEB 2086 and L-652,731 had no effect on neutrophil migration across resting EC induced by formylmethionyl-leucyl-phenylalanine (FMLP). A murine anti-IL-8 antiserum was found to also partially inhibit the neutrophil transmigration across cytokine-activated EC. When the anti-IL-8 antiserum was used in combination with a PAF receptor antagonist, neutrophil migration across cytokine-pretreated monolayers of EC was completely prevented. During transmigration, LAM-1 and CD44 on the neutrophils were down-modulated; both WEB 2086 and anti-IL-8 antiserum partially prevented this down-modulation caused by cytokine-prestimulated EC. Our results indicate that human neutrophils are activated and guided by EC-associated PAF and EC-derived IL-8 during the in vitro diapedesis in between cytokine-stimulated EC.  相似文献   

6.
The regulation of gamma-interferon production by interleukins 1 and 2   总被引:2,自引:0,他引:2  
Purified interleukins 1 and 2 (IL-1 and IL-2) were used to investigate their role in the production of gamma-interferon (gamma-IFN). Macrophage depletion from human peripheral blood mononuclear leukocytes (PBML) inhibited gamma-IFN production. Addition of purified IL-1 partially restored IFN production of macrophage-depleted PBML induced by three T cell mitogens (phytohemagglutinin, PHA; concanavalin A, con A; and staphylococcal enterotoxin A, SEA), but had no effect on induction of IFN production by undepleted PBML. Therefore endogenous IL-1 production by macrophages is probably one of the mechanisms by which they act as accessory cells for IFN production by lymphocytes. A monoclonal antibody 9.6 which binds to the sheep erythrocyte (E) receptor found on human T cells inhibited IFN production. Addition of IL-2, but not IL-1, was found to reverse this inhibition. Prostaglandin E2, a macrophage product, inhibited gamma-IFN production induced by PHA, Con A, and OKT3 but usually not SEA. This inhibitory effect was reversible by the addition of IL-2 but not IL-1. In the absence of mitogen IL-1 alone rarely induced any IFN production, although some IFN was produced by PBML from a small minority of donors. Without mitogen IL-2 induced IFN production only at very high concentrations and the added presence of IL-1 did not enhance this induction.  相似文献   

7.
DL-alpha-Difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase [EC 4.1.1.17] (ODC), inhibited concanavalin A-induced proliferation of splenic mononuclear cells (SMNC). The inhibition was not reversed by interleukin-2 (IL-2) addition. Although DFMO did not affect the production of IL-2 or the expression of high-affinity IL-2 receptor, IL-2-dependent proliferation of SMNC was inhibited by DFMO, and the inhibition was reversed by exogenous putrescine. The inhibition of IL-2-dependent DNA synthesis appeared to be related to the decrease in intracellular polyamines. When the proliferation of SMNC was induced by IL-2, ODC activity was also increased. A similar result was obtained in the proliferation of an IL-2-dependent T cell line, CTLL. The time course of ODC induction was similar to that of IL-2 production by concanavalin A-stimulated SMNC. These results indicate that polyamine biosynthesis is necessary for IL-2-dependent proliferation, but not for IL-2 production or IL-2 receptor expression.  相似文献   

8.
A new synthetic compound, L-652,731 (trans-2,5-(3,4,5-trimethoxyphenyl) tetrahydrofuran), which has been demonstrated by Hwang et al. to be a potent and specific platelet-activating factor (PAF) receptor antagonist causes 100% inhibition of 1 microM PAF-induced neutrophil degranulation at 50 microM, but has no effect on neutrophil degranulation induced by precipitating immune complexes (323 micrograms/ml), fMet-Leu-Phe (10(-7) M), or the calcium ionophore A23187 (10(-5) M). Intravenous infusion of 1 mumol L-652,731 results in almost 100% inhibition of hypotension induced by PAF but not that induced by isoproterenol, histamine, bradykinin, or acetylcholine. With the use of this novel PAF receptor antagonist, the in vivo mediator role of PAF in the soluble immune complex-induced hypotension, extravasation, vascular lysosomal hydrolase secretion, and neutropenia in rats was determined. The hypotension, extravasation, and lysosomal hydrolase release induced by immune complex infusion take 2 to 10 min longer to occur than the same responses elicited by PAF infusion. The neutropenia response is immediate with both stimuli. L-652,731 when orally administered to rats (20 mg/kg, 1.5 hr before PAF infusion) inhibited PAF-induced hypotension (69%), extravasation (76%), vascular lysosomal hydrolase release (79%), and neutropenia (73%). The same L-652,731-dosing regimen inhibited immune complex-stimulated hypotension (87%), extravasation (77%), and vascular lysosomal hydrolase release (31%). The initial and complete neutropenia induced by immune complex infusion was not inhibited in L-652,731-pretreated rats, but the rate of return of neutrophils to the blood was faster in the latter rats. Rats with blocked circulation to the liver still exhibited extensive extravasation and vascular lysosomal hydrolase release in response to PAF, but there was no extravasation and greatly reduced hydrolase release in response to immune complexes. Thus PAF is indicated to be a major mediator of soluble immune complex-induced hypotension and vascular permeability and a minor mediator of immune complex-induced lysosomal hydrolase release in rats. PAF probably does not mediate the initial and complete neutropenia stimulated by immune complexes. The liver is probably the major site for PAF production in response to circulating immune complexes.  相似文献   

9.
The binding of 3H-labeled 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) to isolated rat liver plasma membranes and its inhibition by PAF agonists and receptor antagonists was demonstrated. The specific binding was readily saturable with a high affinity. The equilibrium dissociation constant (KD) value was 0.51 (+/- 0.14) nM and the maximal number of binding sites (Bmax) was estimated to be 141 (+/- 18) fmol/mg protein. The binding site was PAF specific-biologically inactive enantiomer was practically inactive. Two PAF-like receptor antagonists, Ono-6240 and CV-3988, and two PAF-unlike receptor antagonists, L-652,731 and kadsurenone, also displaced the binding of [3H]PAF to rat liver plasma membranes but their relative potencies in this system differed from those found in other receptor systems. Mg2+ potentiated [3H]PAF binding but inhibited it at concentrations higher than 10 mM. Both Na+ and K+ inhibited the Mg2+-potentiated binding, an ionic effect which was different from that found in rabbit platelets. These results suggest that rat livers contain PAF-specific receptors, and the receptors in rat livers are different from those found in other receptor systems.  相似文献   

10.
When added to a 72 h culture of human peripheral blood mononuclear leukocytes stimulated with phytohemagglutinin, PAF-acether caused a significant inhibition (40-65%) of proliferation at concentrations of 10(-8) to 10(-6) M. This inhibition was reversed by the specific PAF antagonist, BN 52021. It was also reversed by indomethacin, suggesting that PAF-acether mediated this suppression via cyclooxygenase metabolites of arachidonic acid. IL-2 production, measured at 24 h of lymphocyte proliferation, was similarly impaired (50-66%) by 10(-8)-10(-6) M PAF-acether. IL-2 production was brought up to 90% of control values when both PAF-acether and BN 52021 (10(-4) M) were added together to the lymphocyte cultures. These studies suggest a significant immunoregulatory role for PAF-acether and a potential use of BN 52021 as a biological response modifier.  相似文献   

11.
Platelet activating Factor (PAF) produced an increase in resting tension of isolated rat stomach fundus strips. The spasmogenic effect of a 90 nM dose was equivalent to the contraction to 110 nM acetylcholine (ACh). Tissues exposed once to PAF became refractory to re-challenge with a dose of PAF normally producing maximum contraction (desensitization). PAF desensitized tissues remained responsive to the contraction effects of ACh and KCl (80 mM). Lyso-PAF failed to produce any effect. PAF contraction was dose-dependently antagonized by pretreatment of tissues with the PAF receptor antagonist L-652,731. PAF contractions were not blocked by antagonists of cholinergic, adrenergic, histaminergic, and serotonergic receptors, nor by inhibition of cyclooxygenase. PAF is a potent spasmogen on the isolated rat stomach fundus strip, and this effect is PAF and PAF-receptor specific.  相似文献   

12.
When human monocytic Mono Mac 6 cells were treated with bacterial LPS (10 ng/ml, 72 h), they showed an increase in phagocytic activity, superoxide anion production, and expression of monocyte/macrophage-associated cell surface Ag. In these more mature (LPS-treated) cells but not in untreated cells, platelet-activating factor (PAF) (100 nM) produced a three- to fourfold increase in cytosolic free Ca2+ concentration. The cytosolic free Ca2+ concentration increase was inhibited by the PAF receptor antagonist L-659,989 (10 microM) and by EGTA (2 mM), indicating receptor-dependent Ca2+ influx. Furthermore, L-659,989 (10 microM), as well as PAF (1 microM), inhibited specific [3H]PAF binding in LPS-treated but not in untreated cells. Consistent with these results, PAF (100 nM) stimulated release of arachidonic acid and thromboxane B2 only in LPS-treated cells, and this could be inhibited by L-659,989 (10 microM) and EGTA (2 mM). Our data indicate that LPS up-regulates PAF-induced Ca2+ influx, resulting in arachidonic acid and eicosanoid release in Mono Mac 6 cells.  相似文献   

13.
In a previous study we reported that cord blood lymphocytes show lower OKT3 responses as compared to their mothers and to other, unrelated adults. In the study reported here, we investigated the interactions between lymphocytes and adherent accessory cells in OKT3-stimulated cultures of newborn (cord), maternal, and other adult peripheral blood mononuclear leukocytes (PBML) and determined the following. (1) Removal of adherent cells (AC), by two cycles of plastic adherence or by nylon wool columns, impaired the OKT3-induced proliferation of maternal/adult cells, but significantly enhanced the OKT3 responsiveness of cord cells. (2) Addition of indomethacin, and other prostaglandin (PG) synthesis inhibitors, caused a more than twofold augmentation of cord PBML OKT3 responses, but had only a small, if any, enhancing effect on maternal/adult PBML. Cord PBML cultures deprived of AC were no longer enhanced by indomethacin. (3) Exogenous PGE2 (1.4 X 10(-6) through 1.4 X 10(-9) M) strongly inhibited OKT3-induced proliferation of maternal, cord, and adult PBML, at a wide range of antibody concentrations (5-100 ng/ml). However, an obvious difference in the extent of PG-mediated inhibition was observed among these three populations, and the order of PG sensitivity, from most to least sensitive, was cord greater than maternal greater than adult. (4) Purified interleukin-1 (IL-1) could not replace the accessory function of AC in the OKT3-induced proliferation of maternal/adult lymphocytes. In contrast, IL-1 increased by greater than 50% the OKT3 responsiveness of cord PBML in the absence, but not in the presence, of cord monocytes. Our observations strongly argue for a distinct, predominantly suppressive function of cord monocytes as compared to maternal/adult monocytes in OKT3-induced mitogenesis, and indicate prostaglandins as major mediators of this suppression.  相似文献   

14.
The properties of a novel platelet-activating factor (PAF) antagonist, L-652731, on oedema responses in rabbit skin induced by exogenous inflammatory mediators and by mediators generated endogenously in a reversed passive Arthus reaction have been investigated. Oedema responses in the skin were measured by using the local accumulation of i.v. injected 125I-albumin. The antagonist, mixed with mediators before intradermal injection, caused a dose-dependent suppression of oedema responses to PAF. In contrast, responses induced by other directly acting mediators (bradykinin and histamine) and responses induced by PMN leukocyte-dependent mediators (C5a des Arg, N-formyl-methionyl-leucyl-phenylalanine, and leukotriene B4) were not suppressed. Thus, a secondary release of PAF does not appear to be involved in mediating the actions of these agents. In a reversed passive Arthus reaction, intradermal injection of L-652731 together with antibody resulted in a significant inhibition of the oedema formation measured for 2 hr after i.v. antigen challenge. In contrast, oedema responses induced by intradermal injection of preformed immune complexes were not affected by the antagonist. These results suggest that the endogenous production of PAF, in close proximity to microvascular endothelial cells, appears to be an important step in the development of an Arthus reaction. The cellular source of PAF is unknown, but one possibility is the PMN leukocyte, which releases PAF during phagocytosis of immune complexes.  相似文献   

15.
Platelet-activating factor (PAF) contracts smooth muscle of airways and vessels primarily via release of thromboxane. Contraction of smooth muscle is thought to be mediated either by calcium and inositol trisphosphate (IP(3))-dependent activation of the myosin light chain kinase or, alternatively, via the recently discovered Rho-kinase pathway. Here we investigated the contribution of these two pathways to PAF and thromboxane receptor-mediated broncho- and vasoconstriction in two different rat models: the isolated perfused lung (IPL) and precision-cut lung slices. Inhibition of the IP(3) receptor (1-10 microM xestospongin C) or inhibition of phosphatidylinositol-specific PLC (30 microM L-108) did not affect bronchoconstriction but attenuated the sustained vasoconstriction by PAF. Inhibition of myosin light chain kinase (35 microM ML-7) or of calmodulin kinase kinase (26 microM STO609), which regulates the phosphorylation of the myosin light chain, had only a small effect on PAF- or thromboxane-induced pressor responses. Similarly, calmidazolium (10 microM), which inhibits calmodulin-dependent proteins, only weakly reduced the airway responses. In contrast, Y-27632 (10 microM), a Rho-kinase inhibitor, attenuated the thromboxane release triggered by PAF and provided partial or complete inhibition against PAF- and thromboxane-induced pressor responses, respectively. Together, our data indicate that PAF- and thus thromboxane receptor-mediated smooth muscle contraction depends largely on the Rho-kinase pathway.  相似文献   

16.
The effects of structurally different PAF receptor blockers were investigated in platelets, neutrophils, guinea pig ileum, rat isolated lung and rat isolated pulmonary artery. PAF caused serotonin release from platelets and a characteristic shape change and adhesion of neutrophils. The antagonists (CV 3988, alprazolam, 48740 RP and Merck-Sharp and Dohme L-652, 731) inhibited platelet serotonin release but not neutrophil shape change adhesion or lysosomal enzyme release. The antagonists in high concentrations (10(-5)-10(-4)M) inhibited nonspecifically the PAF-induced (10(-8)M) guinea pig ileum contraction, but were ineffective at concentrations which inhibited platelet responses. In the rat lung the compounds, in high concentrations, partially inhibited the low dose PAF-induced pulmonary vasodilation and the high dose PAF induced pulmonary vasoconstriction and edema. Our data indicate that some platelet PAF antagonists may be ineffective in blocking the action of PAF on neutrophils and smooth muscle preparations and suggest either PAF-receptor independent actions of PAF or different classes of PAF receptors.  相似文献   

17.
2-O-Methyl analogs of platelet activating factor (PAF) are potent anticancer agents. The sites of action and mechanisms of cell toxicity of these agents are as yet unknown. To better understand the mode of action of this class of anticancer agents, we examined the ability of 1-O-hexadecyl-2-acetylglycero-3-phosphocholine with the S or R configuration at C2 ((R)-PAF and (S)-PAF) and 1-O-hexadecyl-2-methoxyglycero-3-phosphocholine with the S or R configuration at C2 ((R)-ET-16-OCH3-GPC and (S)-ET-16-OCH3-GPC) to induce rabbit platelet aggregation and to inhibit [3H]thymidine uptake into WEHI-3B cells, HL-60 cells, and normal blood lymphocytes. The four chiral ether-linked lipids caused aggregation of rabbit platelets with the following order of potency: (R)-PAF greater than (S)-PAF greater than (R)-ET-16-OCH3-GPC greater than (S)-ET-16-OCH3-GPC; the EC50 values were 1 pM, 50 nM, 1 microM, and 50 microM, respectively. The cytotoxic effects of these ether lipids in leukemic cells was in reverse order to that observed for aggregation of platelets. The order of potency for inhibition of [3H]thymidine uptake by WEHI-3B and HL-60 cells was (R)-ET-16-OCH3-GPC = (S)-ET-16-OCH3-GPC greater than (S)-PAF greater than (R)-PAF; the EC50 values were 2, 2, 15, and greater than 40 microM, respectively. PAF antagonists (WEB 2086, CV 3988, triazolam, and SRI 63,441) blocked the action of the four ether lipids on platelets, while SRI 63,441 blocked the antineoplastic activity of the ether lipids on WEHI-3B and HL-60 cells. None of the four lipids was able to kill normal lymphocytes significantly. Scatchard analysis of PAF receptor binding revealed that HL-60 and WEHI-3B cells, which are sensitive to the cytotoxic action of ether-linked lipids, do not possess PAF receptors, whereas both normal lymphocytes and platelets do possess a PAF receptor. The present data indicate that the cytotoxic action of antineoplastic ether-linked lipids does not involve the PAF receptor. The protective role of SRI 63,441 in blocking the proaggregatory activity of the ether lipids in rabbit platelets involves PAF receptor, but cytotoxic activity against WEHI-3B and HL-60 cells does not result from its ability to act as a PAF antagonist.  相似文献   

18.
In a previous study, we observed that a cell-free Salmonella typhimurium extract induced suppression of mitogen-induced T-cell proliferation and that this suppression involved non-responsiveness of T-cells to interleukin-2 (IL-2) and augmentation of IL-2 receptor (IL-2R) expression. In this study, we found that inhibition of phytohemagglutinin (PHA)-stimulated murine spleen cell proliferation induced by a cell-free S. typhimurium extract was reversed by treatment with an anti-interferon-γ monoclonal antibody (anti-IFN-γ Ab), but not by interleukin-4 or NG-monomethyl-l -arginine, which is known to inhibit nitric oxide (NO)-secretion from spleen cells in culture. However, IL-2R expression was augmented by treatment with the extract, although this was independent of an NO-mediated mechanism. Only anti-IFN-γ Ab treatment reduced the augmented IL-2R expression to a normal level. These results suggest that the suppression of T-cell proliferation induced by the Salmonella cell-free extract is associated with augmentation of IL-2R expression in an NO production-independent manner.  相似文献   

19.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

20.
The characteristics of receptors for platelet-activating factor (PAF) on rabbit neutrophils are investigated in this report. The presence of PAF-specific binding to rabbit neutrophils was confirmed using radiolabeled ligand binding assays and a rabbit peritoneal neutrophil membrane preparation. Binding of PAF to the neutrophil membranes was reversible and reached equilibrium within 30 min. Scatchard analysis of PAF-specific binding to the rabbit neutrophil membranes revealed a dissociation constant (Kd) for PAF of 0.41 +/- 0.045 nM and a Bmax of 0.32 +/- 0.11 pmol of PAF receptor/mg of protein. The order of potencies of PAF receptor antagonists to inhibit the binding of 3H-PAF to rabbit peritoneal neutrophil membranes was determined. For the competition assays, 100 micrograms of neutrophil or platelet membrane protein, 0.18 nM 3H-PAF, and varying amounts of PAF antagonist were incubated at room temperature for 1 hr. PAF receptor antagonists tested were ONO-6240, brotizolam, kadsurenone, WEB-2086, L-652-731, BN-52021, CV-3988, triazolam, alprazolam, and verapamil. The orders of potencies of these PAF receptor antagonists were similar for inhibition of 3H-PAF binding to rabbit peritoneal neutrophil and platelet membranes (correlation coefficient, r = 0.97). PAF had a significantly higher affinity for rabbit neutrophil membranes (Kd = 0.41 +/- 0.045 nM), as compared with its affinity for rabbit platelet membranes (Kd = 0.87 +/- 0.092 nM). In addition, sodium was found to inhibit 3H-PAF specific binding to rabbit platelet membranes and not to affect 3H-PAF binding to neutrophil membranes. These data indicate that, although PAF receptors on rabbit platelets and neutrophils exhibit similar orders of potencies of PAF receptor antagonists to inhibit the binding of 3H-PAF, the disparity in Kd of PAF for the receptors and the effect of NaCl on the binding of 3H-PAF reveal subtle differences between the cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号