首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four neutal fraction glycosphingolipids, designated components 4-7, were purified from the pupae of Calliphora vicina and isolated by the use of high performance liquid chromatography. Their chemical structures were determined to be: GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer and Gal(alpha 1-3)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; Gal(beta 1-3)GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; and GlcNAC(beta 1-3)Gal(beta 1-3)GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer. By the use of specific exoglycosidases, it was possible to assign anomeric configurations to all the sugar residues present. Analysis of the ceramide moiety by electron-impact mass spectrometry revealed the dominant fatty acid and sphingoid to be arachidic acid (C20:0) and tetradecasphing-4-enine, respectively.  相似文献   

2.
Two neutral glycosphingolipids having large straight oligosaccharide chains with eight and nine sugars, provisionally named COS and CNS, were isolated and purified from larvae of the green-bottle fly, Lucilia caesar, as the only two remaining unidentified significant neutral glycolipids in this organism. From the results of sugar analysis, permethylation, negative-ion fast atom bombardment mass spectroscopy (FAB-MS), and 1H-NMR studies, the structures of the two glycolipids are proposed to be: COS, GalNAc beta 1-3GlcNAc beta 1-3Gal beta 1-3GalNAc alpha 1-4GalNAc beta 1-4GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer; and CNS, Gal beta 1-3GalNAc beta 1-3GlcNAc beta 1-3Gal beta 1-3GalNAc alpha 1-4GalNAc beta 1-4GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer. The fatty acid and long-chain base compositions of the above glycolipids were very similar, and were dominated by arachidic acid, and tetradeca- and hexadeca-4-sphingenines. The great similarity between the compositions of their ceramide moieties suggests that COS may be a precursor in the glycosylation reaction yielding CNS.  相似文献   

3.
Skin fibroblast cultures from patients with inherited lysosomal enzymopathies, alpha-N-acetylgalactosaminidase (alpha-NAGA) and alpha-galactosidase A deficiencies (Schindler and Fabry disease, respectively), and from normal controls were used to study in situ degradation of blood group A and B glycosphingolipids. Glycosphingolipids A-6-2 (GalNAc (alpha 1-->3)[Fuc alpha 1-->2]Gal(beta1-->4)GlcNAc(beta 1-->3)Gal(beta 1--> 4)Glc (beta 1-->1')Cer, IV(2)-alpha-fucosyl-IV(3)-alpha-N-acetylgalactosaminylneolactotetraosylceramide), B-6-2 (Gal(alpha 1-->3)[Fuc alpha 1--> 2] Gal (beta 1-->4)GlcNAc(beta 1-->3)Gal(beta 1-->4)Glc(beta 1-->1')Cer, IV(2)- alpha-fucosyl-IV(3)-alpha-galactosylneolactotetraosylceramide), and globoside (GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc(beta 1-->1') Cer, globotetraosylceramide) were tritium labeled in their ceramide moiety and used as natural substrates. The degradation rate of glycolipid A-6-2 was very low in fibroblasts of all the alpha-NAGA-deficient patients (less than 7% of controls), despite very heterogeneous clinical pictures, ruling out different residual enzyme activities as an explanation for the clinical heterogeneity. Strongly elevated urinary excretion of blood group A glycolipids was detected in one patient with blood group A, secretor status (five times higher than upper limit of controls), in support of the notion that blood group A-active glycolipids may contribute as storage compounds in blood group A patients. When glycolipid B-6-2 was fed to alpha-galactosidase A-deficient cells, the degradation rate was surprisingly high (50% of controls), while that of globotriaosylceramide was reduced to less than 15% of control average, presumably reflecting differences in the lysosomal enzymology of polar glycolipids versus less-polar ones. Relatively high-degree degradation of substrates with alpha-D-Galactosyl moieties hints at a possible contribution of other enzymes.  相似文献   

4.
A series of glycosphingolipids containing 2'-aminoethylphosphoryl(----6)-N-acetylglucosamine as a polar group has been demonstrated in larvae of the green-bottle fly, Lucilia caesar. The thin-layer chromatographic pattern of the total polar glycolipid revealed the presence of more than eight components, of which five major components were purified by the use of successive column chromatography on QAE- and DEAE-Sephadex and silicic acid (Iatrobeads). From structural studies including compositional sugar analysis, hydrogen fluoride degradation, proton magnetic resonance spectroscopy, methylation analysis, and fast atom bombardment mass spectrometry, their structures were deduced to be as follows: 2'-aminoethylphosphoryl----6GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, GalNAc beta 1-4(2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, GalNAc alpha 1-4GalNAc beta 1-4(2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, Gal beta 1-3GalNAc alpha 1-4GalNAc-beta 1-4(2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc beta 1-Cer, and GlcNAc beta 1-3Gal-beta 1-3GalNAc alpha 1-4GalNAc beta 1-4 (2'-aminoethylphosphoryl----6)GlcNAc beta 1-3Man beta 1-4Glc-beta 1-Cer. The main molecular species of the ceramide moiety was arachidinyltetradecasphingenine in all of the major glycolipids.  相似文献   

5.
A monoclonal antibody produced by immunization with cells of the human glioma cell line D-54 MG reacted with ganglioside GM2. The binding epitope of the antibody was found to be GalNAc beta 1-4(NeuAc alpha 2-3)Gal. Immunological detection of glycolipid antigens on thin-layer plates with this monoclonal antibody, DMAb-1, revealed the presence of a new ganglioside. This ganglioside, co-migrating with NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer(6'-LM1) and GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-3GalNAc beta 1-4Gla beta 1-4Glc beta 1-1Cer (GalNAc-isoGM1) at chromatographic separation was isolated from human meconium. Its structure was determined by permethylation and fast atom bombardment-mass spectometry analyses. The new ganglioside was found to be a combination of the lacto and ganglio series gangliosides, and the structure found to be GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-3GlcNAc alpha 1-3Gal beta 1-4Glc beta 1-1Cer(GalNAc-3'-isoLM1).  相似文献   

6.
Escherichia coli K12, which possess the K99 plasmid and synthesize K99 fimbriae (E. coli K99), cause severe neonatal diarrhea in piglets, calves, and lambs but not in humans. The organism binds specifically and with high affinity to only two glycolipids in piglet intestinal mucosa as demonstrated by overlaying glycolipid chromatograms with 125I-labeled bacteria. These glycolipids, which are N-glycolyl-GM3 (NeuGc alpha 2-3Gal beta 1-4Glc beta 1-1Cer) and N-glycolylsialoparagloboside (NeuGc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer), occur at about 13 and 0.3 micrograms per gram wet weight of mucosa, respectively. E. coli K99 grown at 18 degrees C, a temperature at which the K99 fimbriae are not expressed, do not bind to these glycolipids. Of the standard glycolipids tested in solid phase binding assays, E. coli K99 binds with highest affinity to N-glycolylsialoparagloboside, with less affinity to N-glycolyl-GM3, and with very low affinity to N-acetylsialoparagloboside. The bacteria do not bind to GM3 (NeuAc alpha 2-3Gal beta 1-4Glc beta 1-1Cer), GM2 (GalNAc beta 1-4[Neu-Ac alpha 2-3]Gal beta 1-4Glc beta 1-1Cer), GM1 (Gal beta 1-3GalNAc beta 1-4[NeuAc alpha 2-3]Gal beta 1-4Glc beta 1-1Cer), or several other N-acetylsialic acid-containing gangliosides and neutral glycolipids at the levels tested. N-Glycolylsialyl residues are found in the glycoproteins and glycolipids of piglets, calves, and lambs but not in the glycoproteins and glycolipids of humans. Possibly this distribution of sialyl derivatives explains the host range of infection by the organism.  相似文献   

7.
Pseudomonas aeruginosa infection in the lungs is a leading cause of death of patients with cystic fibrosis, yet a specific receptor that mediates adhesion of the bacteria to host tissue has not been identified. To examine the possible role of carbohydrates for bacterial adhesion, two species of Pseudomonas isolated from patients with cystic fibrosis were studied for binding to glycolipids. P. aeruginosa and P. cepacia labeled with 125I were layered on thin-layer chromatograms of separated glycolipids and bound bacteria were detected by autoradiography. Both isolates bound specifically to asialo GM1 (Gal beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer) and asialo GM2 (GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer) but not to lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), globoside (GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer), paragloboside (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer), or several other glycolipids that were tested. Asialo GM1 and asialo GM2 bound the bacteria equally well, exhibiting similar binding curves in solid-phase binding assays with a detection limit of 200 ng of either glycolipid. Both isolates also did not bind to GM1, GM2, or GDla suggesting that substitution of the glycolipids with sialosyl residues prevents binding. As the Pseudomonas do not bind to lactosylceramide, the beta-N-acetylgalactosamine residue, positioned internally in asialo GM1 and terminally in asialo GM2, is probably required for binding. beta-N-Acetylgalactosamine itself, however, is not sufficient as the bacteria do not bind to globoside or to the Forssman glycolipid. These data suggest that P. aeruginosa and P. cepacia recognize at least terminal or internal GalNAc beta 1-4Gal sequences in glycolipids which may be receptors for these pathogenic bacteria.  相似文献   

8.
Two glucuronic acid-containing glycosphingolipids were purified from larvae of the green-bottle fly, Lucilia caesar by DEAE-Sephadex and Iatrobeads column chromatography. Structures of these acidic glycolipids, glycolipids X and Y, were elucidated by means of sugar analysis, permethylation, enzymatic hydrolysis, negative-ion fast atom bombardment mass spectrometry, and NMR studies. Glycolipid X was determined to have the following structure: GlcA beta 1-3Gal beta 1-3GalNAc alpha 1-4 GalNAc beta 1-4 GlcNAc beta 1-3Man beta 1-4Glc beta 1-1 ceramide. The other acidic glycolipid, glycolipid Y contains a phosphoethanolamine residue linked through the 6-hydroxy group of the N-acetyl-glucosamine unit of glycolipid X. The ceramide moieties were composed of saturated fatty acids (16:0-22:0) and tetradeca- and hexadeca-4-sphingenines. Based on the structural similarity of the ceramide moieties it appears likely that glycolipid X is an intermediate from which glycolipid Y is synthesized by addition of a phosphoethanolamine residue.  相似文献   

9.
A receptor uniquely found on the surface of rat Kupffer cells was shown previously to bind oligosaccharides terminating in galactose, N-acetylgalactosamine, and fucose. To analyze further the binding specificity of the receptor, receptor-mediated adhesion of transfected COS cells to immobilized glycolipids of known structure was measured. The glycolipid Gb4Cer (GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1Cer) was the best ligand. Gb5Cer (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1Cer) and LacCer (Gal beta 1-4Glc beta 1Cer) bound more weakly (five times less than Gb4Cer) and Gb3Cer (Gal alpha 1-4Gal beta 1-4Glc beta 1Cer), and g3Cer(GalNAc beta 1-4Gal beta 1-4Glc beta 1Cer) bound even more weakly (60 times less than Gb4Cer). Gangliosides did not support adhesion of transfected cells. The adhesion of COS cells transfected with plasmids encoding variants of the receptor was also examined. In each variant, either tryptophan 498 or 523, which are conserved in most C-type lectins, was replaced by one of several amino acids. Variants that retained binding activity had the same specificity as the normal receptor. Differences between variants were noted, however, in maximal levels of adhesion and these differences correlated with altered expression of the receptor variants in COS cells.  相似文献   

10.
Bovine blood coagulation factor X contains both asparagine-linked and threonine-linked oligosaccharides. The asparagine-linked chain is a mixture of a tridecasaccharide NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and a dodecasaccharide NeuAc alpha 2 leads to 6 Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and their partial desialylation products. The threonine-linked chain is a mixture of NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GalNAc, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuGly alpha 2 leads to 6)GalNAc, NeuGly alpha 2 leads to 3Gal beta 1 leads to 3 (NeuAc alpha 2 leads to 6)GalNAc, and NeuGly alpha 2 leads to 3Gal beta 1 leads to 3(NeuGly alpha 2 leads to 6)GalNAc, and their partial desialized forms. The carbohydrate moieties of the factor X subgroups, factors X1 and X2, are identical.  相似文献   

11.
The carbohydrate moieties of glycosphingolipids from eggs of the human parasite, Schistosoma mansoni, were enzymatically released, labelled with 2-aminopyridine (PA), fractionated and analysed by linkage analysis, partial hydrolysis, enzymatic cleavage, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-electrospray ionization mass spectrometry. Apart from large, highly fucosylated structures with five to seven HexNAc residues, we found short, oligofucosylated species containing three to four HexNAc residues. Their structures have been determined as Fuc(alpha1-3)GalNAc(beta1-4)[ +/- Fuc (alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4) Glc-PA, Fuc(alpha1-3)GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-4) GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, and Fuc(alpha1-3) GalNAc(beta1-4)[ +/- Fuc(alpha1-2) +/- Fuc(alpha1-2)Fuc(alpha1-3)]Glc NAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA. The last structure exhibits a trifucosyl sidechain previously identified on the cercarial glycocalyx. These structures stress the importance of 3-fucosylated GalNAc as a terminal epitope in schistosome glycoconjugates. To what degree these glycans contribute to the pronounced antigenicity of S. mansoni egg glycolipids remains to be determined. In addition, we have identified the compounds GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3) GalNAc (beta1-4)Glc-PA, the latter of which is a Lewis X-pentasaccharide identical to that present on cercarial glycolipids, as well as Gal(beta1-3)GalNAc(1-4)Gal(1-4)Glc-PA, which corresponds to asialogangliotetraosylceramide and is most probably derived from the mammalian host.  相似文献   

12.
Biosynthesis of the c-series gangliosides GT3, GT2 and GP1c was studied in Golgi derived from rat liver. Competition experiments show that the synthesis of ganglioside GT2 (GalNAc beta 1----4-(NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal- beta 1----4Glc beta 1----1Cer) from GT3 (NeuAc alpha 2----8NeuAc alpha 2----8-NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) seems to be catalysed by the same N-acetylgalactosaminyl-transferase (GalNAc-T), which converts GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) to GM2 (GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1Cer). Similar competition experiments suggest moreover that the sialytransferase V (SAT V), which catalyses the synthesis of GT1a (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4- (NeuAc alpha 2----3)-Gal beta 1----4Glc beta 1----1Cer) from GD1a (NeuAc alpha-2----3Gal beta 1----3GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1-Cer) appears to be identical to the enzyme that catalyses the synthesis of GP1c (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3-GalNAc beta 1----4(NeuAc alpha 2----8-NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta-1----4Glc beta 1----4Glc beta 1----1Cer) from GQ1c (NeuAc alpha 2----3Gal beta 1----3Gal-NAc beta 1----4 (NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4-Glc beta 1----1Cer).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1H NMR spectra of the ceramide hexasaccharide obtained after the removal of the terminal alpha-Gal and subterminal beta-Gal residues from the ceramide decasaccharide, Gal(alpha 1-3)Gal(beta 1-4)GlcNAc(beta 1-3)[Gal(alpha 1-3)Gal(beta 1-4)GlcNAc (beta 1-6)]Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)Glc(beta 1-1)Cer, showed that terminal and internal GlcNAc residues are differentiated by their chemical shifts. This finding enabled us to determine the primary structure of the title compound as Gal(alpha 1-3)Gal(beta 1-4)GlcNAc (beta 1-3)[Gal(alpha 1-3)Gal(beta 1-4)GlcNAc(beta 1-6)]Gal(beta 1-4)GlcNAc (beta 1-3)[Gal(alpha 1-3)Gal(beta 1-4)GlcNAc(beta 1-6)]Gal(beta 1-4)GlcNAc (beta 1-3)Gal(beta 1-4)Glc(beta 1-1)Cer. Alternative branching of this oligosaccharide chain was excluded since the removal of all terminal alpha-Gal and penultimate beta-Gal residues yielded a ceramide nonasaccharide containing one terminal and two internal 1----3-linked GlcNAc residues, as well as two terminal 1----6-linked GlcNAc units. The intermediate degradation products of the ceramide deca- and pentadecasaccharides , viz. the ceramide octa- and dodecasaccharide , obtained by the removal of alpha-Gal residues only, as well as the linear ceramide heptasaccharide, Gal(alpha 1-3)Gal(beta 1-4)GlcNAc(beta 1-3) Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)Glc(beta 1-1)Cer, and ceramide hexasaccharide, Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)GlcNAc (beta 1-3)Gal(beta 1-4)Glc(beta 1-1)Cer, were also investigated. The usefulness of the glycosylation-induced chemical shifts is discussed.  相似文献   

14.
One of the monoclonal (AH-6) antibodies prepared by hybridoma technique against human gastric cancer cell line MKN74 was found to react with a series of glycolipids having the Y determinant (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc). The structure of one such glycolipid isolated from human colonic cancer and from dog intestine was identified as lactodifucohexaosyl-ceramide (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide; IV3,III3Fuc2nLc4Cer). The hapten glycolipid did not react with monoclonal antibodies directed to Lea, Leb, and X-hapten structures, and the AH-6 antibody did not react with the X-hapten ceramide pentasaccharide (Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide), H1 glycolipid (Fuc alpha 1 leads to 2Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide), nor with glycolipids having the Leb (Fuc alpha 1 leads to 2Gal beta 1 leads to 3[Fuc alpha 1 leads 4]GlcNAc beta 1 leads to R) determinant. The antibody reacted with blood group O erythrocytes, but not with A erythrocytes. Immunostaining of thin layer chromatography with the monoclonal antibody AH-6 indicated that a series of glycolipids with the Y determinant is present in tumors and in O erythrocytes.  相似文献   

15.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(alpha1-3)Gal(beta1-4)Glc (alpha3'-galactosyllactose), Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose), Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (B-tetrasaccharide), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (A-tetrasaccharide), Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)[Gal(alpha1-3)Gal(beta1-4)Glc NAc(beta1-6)]Gal(beta1-4)Glc; the saccharides from another animal: alpha3'-galactosyllactose, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, A-tetrasaccharide, GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)[Fuc(alpha1-3)]Glc (A-pentasaccharide), Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[F uc(alpha1-3)]Glc (difucosylheptasaccharide) and Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)?Gal(alpha1-3) Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)?Gal(beta1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had alpha-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

16.
Antiserum against GlcNAc beta 1----2Man alpha 1----3Man beta 1----4Glc beta 1----1Cer (MlOse4Cer), a mannolipid isolated from spermatozoa of the fresh-water bivalve Hyriopsis schlegelii, was elicited in rabbits by repeated injection of a mixture of hapten-bovine serum albumin with Freund's adjuvant. The specificity of the affinity-purified antibody obtained from the serum was based on two forms of enzyme-immunodetection of its binding to structurally related glycolipids, either adsorbed to microtiter plates or chromatographed on thin-layer plates. The purified antibody exhibited a significant cross-reactivity with GlcNAc beta 1----2Man alpha 1----3(Xyl beta 1----2)Man beta 1----4Glc beta 1----1Cer, (MIXOse5Cer) containing a core structure closely related to MlOse4Cer, but almost unrelated to other glycolipids. Distribution of MlOse4Cer and MlXOse5Cer in various bivalve and snail glycolipid extracts were screened in thin-layer immunobinding assays by using this purified specific antibody. The presence of the glycolipid antigens was limited to certain taxonomic orders of shellfish species.  相似文献   

17.
The primary structural analysis of O- and N-linked carbohydrate chains of the C-1-esterase inhibitor purified from normal serum was carried out by 400-MHz 1H-NMR spectroscopy. C-1-esterase inhibitor protein of a molecular weight of 116,000 daltons contains 24 O-glycans: NeuAc (alpha 2-3) Gal (beta 1-3) GalNAc, 4 N-glycans: NeuAc (alpha 2-6) Gal (beta 1-4) (GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-6) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc and 2 N-glycans: NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc. 30% of the N-glycans are fucosylated.  相似文献   

18.
GalNAc beta 1----3 terminated glycosphingolipids of human erythrocytes   总被引:4,自引:0,他引:4  
Nonacid glycosphingolipids with 4 to 10 sugar residues isolated from pooled erythrocytes of blood group O donors have been efficiently separated as peracetylated derivatives on silicic acid. This procedure enabled a quantitative estimate of individual compounds and also revealed several GalNAc beta 1----3 terminated structures. The structural characterization of these glycolipids with 1H-NMR spectroscopy, direct inlet mass spectrometry, gas chromatography, and gas chromatography-mass spectrometry identified the compounds as GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1-N-acetyl sphingosine and GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1-N-acetyl phytosphingosine, GalNAc beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1 ceramide, and GalNAc beta 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc beta 1----1 ceramide.  相似文献   

19.
Six neutral glycosphingolipids (GL-1-GL-6) were obtained from eggs of the sea hare (Aplysia juliana) and were characterized by FABMS, 1H-NMR, partial acid hydrolysis, methylation studies and GC analysis of the component sugars, fatty acids and long-chain bases. The following structures were determined to be Glc beta 1-1Cer (89%) and Gal beta 1-1Cer (11%) for GL-1, Glc beta 1-1Cer (47%) and Gal beta 1-1Cer (53%) for GL-2 having hydroxy fatty acids in the ceramide moiety, Gal beta 1-4Glc beta 1-1Cer for GL-3, Fuc alpha 1-2Gal beta 1-4Glc beta 1-1Cer for GL-4, Gal alpha 1-2Gal beta 1-4Glc beta 1-1Cer for GL-5 and GalNAc alpha 1-3(Gal alpha 1-2)Gal beta 1-4Glc beta 1-1Cer for GL-6. The fatty acid composition of each glycosphingolipid, except for GL-2, which contained 2-hydroxypalmitic acid, consisted of mostly saturated C16-C20 acids, especially palmitic acid and stearic acid. The long-chain bases of all glycosphingolipids consisted mainly of branched nonadeca-4-sphingenine and octadeca-4-sphingenine. GL-6, which was one of the major glycosphingolipids, may be a precursor of a series of phosphonoglycosphingolipids which have been isolated from the skin of A. kurodai.  相似文献   

20.
It was previously reported that monoclonal IgM from two patients with gammopathy and neuropathy showed similar specificity by reacting with the same group of unidentified minor components in the ganglioside fractions of human nervous tissues (Ilyas, A. A., Quarles, R. H., Dalakas, M. C., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6697-6700). Enzymatic degradation, ion-exchange chromatography, and immunostaining of purified ganglioside standards on thin-layer chromatograms have now revealed that the antigenic glycolipids recognized by the IgM from these patients are gangliosides GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer(GM2), GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer (IV4GalNAcGM1b), and GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4 beta Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1-Cer (IV4GalNAcGD1a). The monoclonal IgM appears to be reacting with the terminal [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-] moiety shared by these three gangliosides and is a useful probe for detecting small amounts of GM2, IV4GalNAcGM1b, IV4GalNAcGD1a, and other gangliosides with the same terminal sugar configuration in tissues. Species distribution studies using the antibody revealed that GM2 is present in the brains and nerves of all species examined, while IV4GalNAcGM1b and IV4GalNAcGD1a exhibit some striking species specificity. GM2, but not IV4GalNAcGD1a, is enriched in purified myelin from human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号