首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用DNA 复性动力学方法克隆到一个水稻中度重复顺序。Southern 杂交、限制性内切酶分析及序列分析资料表明,该重复顺序在水稻基因组中具有串联重复和散布状态两种存在方式。以该DNA 片段作探针,用Southern 杂交方法分析了多种野生稻种和栽培稻品种的基因组分化特征。某些限制性内切酶消化过的水稻DNA,其图谱呈现出多达40 条以上的杂交带,包括强杂交带和弱杂交带两种类型。重复实验结果证明,强杂交带表现为BBCC染色体组型特异而弱带则在栽培稻各品种间显示出丰富的多态性,表明该重复顺序片段在水稻理论研究和育种实践中可能具有重要意义  相似文献   

2.
DNA clones containing foldback sequences, derived from Physarum polycephalum nuclear DNA, can be classified according to their pattern of hydridisation to Southern blots of genomic DNA. One group of DNA clones map to unique DNA loci when used as a probe to restriction digests of Physarum nuclear DNA. These cloned segments appear to contain dispersed repetitive sequence elements located at many hundreds of sites in the genome. Similar patterns of hybridisation are generated when these cloned DNA probes are annealed to DNA restriction fragments of genomic DNA obtained from a number of different Physarum strains, indicating that no detectable alteration has occurred at these genomic loci subsequent to the divergence of the strains as a result of the introduction or deletion of mobile genetic elements. However, deletion of segments of some cloned DNA fragments occurs following their propagation in Escherichia coli. A second, distinct group of clones are shown to be derived from highly methylated segments of Physarum DNA which contain very abundant repetitive sequences with regular, though complex, arrangements of restriction sites at their various genomic locations. It is suggested that these DNA segments contain clustered repetitive sequence elements. The results lead to the conclusion that foldback elements in Physarum DNA are located in segments of the genome which display markedly different patterns of sequence organisation and degree of DNA methylation.  相似文献   

3.
To study whether specific DNA sequences are associated with nuclear membranes, residual DNA was extracted from DNase-treated nuclear envelopes prepared from erythrocytes of adult chickens (Gallus domesticus). This DNA was then blunt-end ligated into a bacterial plasmid vector. DNA blot analysis and nucleotide sequence determination revealed that approximately 30% of the cloned fragments consisted of different multiples of a 41–42 bp tandemly repeated, partially symmetrical sequence. In situ hybridization to chicken chromosomes demonstrated that the sequence was located primarily on microchromosomes, although some hybridization was also observed to macrochromosomes 7 and 8. Digestion of chicken DNA with any of a number of restriction enzymes did not completely reduce the intensity of a high molecular weight band to which the repeated sequence hybridized. These results, along with those obtained from in situ hybridization, suggested that many copies of this sequence are organized into large tandem arrays, and are not dispersed in many shorter repetitive blocks throughout the chicken genome. Although the repetitive sequence constituted approximately 10% of the chicken genome, it did not hybridize to quail or turkey DNA.  相似文献   

4.
The location of sequences homologous to a cloned D. melanogaster DNA segment, Dm 25, has been examined in polytene chromosomes by hybridization in situ. Dm 25 localizes to multiple sites and shows variation in patterns between different strains and among individuals within wild-type laboratory strains. Analysis of numerous geographically distinct isogenic lines suggests that Dm 25 patterns are determined by germ-line factors and are not the product of strictly somatic events. In general there is wide variation in Dm 25 patterns among different lines, but a significant number of sites are common to two or more distinct lines. Hybridization to restriction digests of genomic DNA suggests that Dm 25 is a moderately repetitive, conserved sequence whose copies are dispersed throughout the genome. Analysis of species other than melanogaster indicates a significant divergence in structure of sequences homologous to Dm 25 as well as a drastic reduction in amount of homology to the melanogaster sequence.  相似文献   

5.
Whole genomic DNA-DNA hybridization has been a cornerstone of bacterial species determination but is not widely used because it is not easily implemented. We have developed a method based on random genome fragments and DNA microarray technology that overcomes the disadvantages of whole-genome DNA-DNA hybridization. Reference genomes of four fluorescent Pseudomonas species were fragmented, and 60 to 96 genome fragments of approximately 1 kb from each strain were spotted on microarrays. Genomes from 12 well-characterized fluorescent Pseudomonas strains were labeled with Cy dyes and hybridized to the arrays. Cluster analysis of the hybridization profiles revealed taxonomic relationships between bacterial strains tested at species to strain level resolution, suggesting that this approach is useful for the identification of bacteria as well as determining the genetic distance among bacteria. Since arrays can contain thousands of DNA spots, a single array has the potential for broad identification capacity. In addition, the method does not require laborious cross-hybridizations and can provide an open database of hybridization profiles, avoiding the limitations of traditional DNA-DNA hybridization.  相似文献   

6.
七株昆虫核型多角体病毒基因组同源性的测定   总被引:3,自引:0,他引:3  
应用限制性内切酶图谱分析法,结合Southern印迹法和核酸杂交技术,对茶毛虫、棉蛉虫,油桐尺蠖、斜纹夜蛾以及蓖麻蚕等5种昆虫的7株核型多角体病毒DNA,进行了基因组同源性测定。结果表明,不同种昆虫多角体病毒DNA的酶切图谱不相同,DNA片段与不同源的DNA标记探针之间无杂交带出现。而同种昆虫病毒的不同分离株间,除少数DNA片段的电泳迁移率稍有不同,以及出现一些互不相同的亚克分子带之外,它们的DNA酶切图谱基本一致,並且几乎所有片段都可与同种的标记探钟杂交。对一些DNA片段迁移率的改变及亚克分子带出现的原因进行了讨论。  相似文献   

7.
The organization of the nuclear ribosomal units of five different species of Chlamydomonas has been examined by hybridization of their nuclear DNA fragments produced by several restriction endonucleases with a radioactively labelled probe consisting of the two cloned BamHI ribosomal fragments of C. reinhardii. The results indicate that a) the ribosomal units of these five species are structurally related, b) changes in the non transcribed spacer occur in C. eugametos and in C. globosa, c) the rDNA unit of C. intermedia contains either an enlarged internal transcribed spacer or a ribosomal intervening sequence, d) the rDNA units of C. reinhardii and C. callosa are indistinguishable.  相似文献   

8.
Nontranscribed spacers in Drosophila ribosomal DNA   总被引:3,自引:0,他引:3  
Ribosomal DNA nontranscribed spacers in Drosophila virilis DNA have been examined in some detail by restriction site analysis of cloned segments of rDNA, nucleic acid hybridizations involving unfractionated rDNA, and base composition estimates. The overall G+C content of the spacer is 27–28%; this compares with 39% for rDNA as a whole, 40% for main band DNA, and 26% for the D. virilis satellites. Much of the spacer is comprised of 0.25 kb repeats revealed by digestion with Msp I, Fnu DII or Rsd I, which terminate very near the beginning of the template for the ribosomal RNA precursor. The spacers are heterogeneous in length among rDNA repeats, and this is largely accounted for by variation among rDNA units in the number of 0.25 kb elements per spacer. Despite its high A+T content and the repetitive nature of much of the spacer, and the proximity of rDNA and heterochromatin in Drosophila, pyrimidine tract analysis gave no indication of relatedness between the spacer and satellite DNA sequences. Species of Drosophila closely related to D. virilis have rDNA spacers that are homologous with those in D. virilis to the extent that hybridization of a cloned spacer segment of D. virilis rDNA to various DNA is comparable with hybridization to homologous DNA, and distributions of restriction enzyme cleavage sites are very similar (but not identical) among spacers of the various species. There is spacer length heterogeneity in the rDNA of all species, and each species has a unique major rDNA spacer length. Judging from Southern blot hybridization, D. hydei rDNA spacers have 20–30% sequence homology with D. virilis rDNA spacers, and a repetitive component is similarly sensitive to Msp I and Fnu DII digestion, D. melanogaster rDNA spacers have little or no homology with counterparts in D. virilis rDNA, despite a similar content of 0.25 kb repetitive elements. In contrast, sequences in rDNA that encode 18S and 28S ribosomal RNA have been highly conserved during the divergence of Drosophila species; this is inferred from interspecific hybridizations involving ribosomal RNA and a comparison of distributions of restriction enzyme cleavage sites in rDNA.Dedicated to Professor Wolfgang Beermann on the occasion of his sixtieth birthday  相似文献   

9.
The chromosomal localization and genomic organization of three cloned repetitive DNA fragments (viz., H-76, H-61, and H-19) isolated from theAedes albopictus genome have been examined inAe. albopictus and six otherAedes species:Ae. aegypti, Ae. seatoi, Ae. flavopictus, Ae. polynesiensis, Ae. alcasidi andAe. katherinensis. The results fromin situ and Southern hybridization analyses show that the sequences homologous to cloned repetitive DNA fragments are dispersed throughout the genome in each species. The sequences homologous to these cloned repetitive DNA fragments are also found inHaemagogus equinus, Tripteroides bambusa andAnopheles quadrimaculatus and are dispersed in their genomes. Data indicate divergence in the amount and the structural organization of sequences homologous to these cloned fragments among mosquito species.  相似文献   

10.
Tetrahymena micronuclear DNA fragments have been cloned in the plasmid pBR322. One clone, pTt 2512, has been found to contain the C-C-C-C-A-A hexanucleotide repeat which is also present in the macronuclear rDNA. Further restriction enzyme digestion and hybridization studies suggest that the clone also contains sequences that are not present in the somatic macronucleus. The flanking sequences of the C4A2 repeats in this clone were separated into four restriction fragments, one from one side and three from the other. These fragments were used as probes for Southern hybridization to study the organizations of similar sequences in the macronucleus and micronucleus. All four fragments hybridized to many fragments of restriction enzyme digested micronuclear DNA. However, none of these hybridizations were detected in the macronucleus. Thus, these families of repetitive DNA are completely eliminated from the macronucleus. Further analysis suggested that the four different sequences may be linked at other locations of the genome. Using nullisomic strains of Tetrahymena, it is found that at least one of these sequences is present in more than one chromosome. Studies of various normal and star strains of Tetrahymena suggest that these sequences are stable in the normal micronucleus but are altered drastically in the defective micronuclei of the star strains. Eliminated DNA of similar nature has also been found in at least five other randomly selected clones of micronuclear DNA and may be present widely in the genome.  相似文献   

11.
Evaluating Quantitative Variation in the Genome of ZEA MAYS   总被引:7,自引:2,他引:5       下载免费PDF全文
Genomic diversity within the species Zea mays has been examined by measuring the variation in the repetitive component of the nuclear genome among North American inbred lines and varieties. This was done by preparing a set of clones of repetitive maize sequences that differ in function, molecular arrangement and multiplicity and then using these as probes for quantitative hybridization to DNA from various maize genotypes. The comparison showed that the majority of repeated sequences are markedly variable in copy number among the ten maize strains tested.The clone sample contained the rDNA and 5S genes, the major repeat of the chromosome knobs, sequences functioning as origins of DNA replication in yeast (ARS sequences) and randomly cloned sequences of unknown function and chromosomal location. The sequences ranged in reiteration frequency from 200 to greater than 10(5) copies and included both tandemly arrayed and dispersed repeats. The copy numbers were measured by hybridizing labeled cloned sequences to aliquots of high molecular weight genomic DNA that were applied to nitrocellulose filters through a slotted template (slot blotting). The hybridization signal on an autoradiogram occurred in a narrow band that could be scored reliably with a densitometer. This provided a rapid method of determining the abundance of particular repeated sequences in individual plants and plant populations. Using this technique, we found that the copy number of repeated sequences of all types generally varied among the strains by two- to threefold, although at least one sequence showed no detectable variation. In contrast to the variability found between strains, individuals within an inbred line or variety were found to be indistinguishable in terms of specific sequence multiplicity. Each genotype has a different pattern of copy numbers for the set of repeated sequence clones, and this pattern is characteristic of all individuals of a particular genotype. The data also show that the copy number of each sequence varies independently. No strains had uniformly high or low copy numbers for the entire set of probes.  相似文献   

12.
The genus Triticum includes several polyploid species that arose due to hybridization between two or more diploid species. Section Sitopsis is comprised of five diploid species given the genome designation S. Four polyploid species are recognized that contain an S or S-derived genome. We have used two repetitive DNA sequences found primarily in the S genomes of Triticum to determine the likely diploid progenitors of the polyploid species. Comparison of restriction fragments that hybridize to probes for these sequences suggests that T. speltoides is distinct from other members of section Sitopsis (i.e., T. longissimum, T. bicorne, T. searsii, and T. sharonense). The S-derived genome of T. aestivum is more closely related to T. speltoides than to the other Sitopsis diploids. The restriction fragment pattern of T. timopheevii is 98% identical to that of T. speltoides, while those of T. kotschyi and T. syriacum are identical to the group of diploids represented by T. longissimum, T. bicorne, T. searsii, and T. sharonense. Our results are compatible with previous molecular and biochemical data regarding relationships among Triticum species containing an S or S-derived genome.  相似文献   

13.
Methods of genome analysis, including the cloning and manipulation of large fragments of DNA, have opened new strategies for uniting molecular evolutionary genetics with chromosome evolution. We have begun the development of a physical map of the genome of Drosophila virilis based on large DNA fragments cloned in bacteriophage P1. A library of 10,080 P1 clones with average insert sizes of 65.8 kb, containing approximately 3.7 copies of the haploid genome of D. virilis, has been constructed and characterized. Approximately 75% of the clones have inserts exceeding 50 kb, and approximately 25% have inserts exceeding 80 kb. A sample of 186 randomly selected clones was mapped by in situ hybridization with the salivary gland chromosomes. A method for identifying D. virilis clones containing homologs of D. melanogaster genes has also been developed using hybridization with specific probes obtained from D. melanogaster by means of the polymerase chain reaction. This method proved successful for nine of ten genes and resulted in the recovery of 14 clones. The hybridization patterns of a sample of P1 clones containing repetitive DNA were also determined. A significant fraction of these clones hybridizes to multiple euchromatic sites but not to the chromocenter, which is a pattern of hybridization that is very rare among clones derived from D. melanogaster. The materials and methods described will make it possible to carry out a direct study of molecular evolution at the level of chromosome structure and organization as well as at the level of individual genes.  相似文献   

14.
I Marin  M Labrador  A Fontdevila 《Génome》1992,35(6):967-974
The frequency and types of repetitive nonsatellite DNA of two sibling species of the repleta group of Drosophila, D. buzzatii, and D. koepferae have been determined. For each species, the analysis is based on a sample of more than 100 clones (400 kb) obtained from genomic DNA. A theoretical model has been developed to correct for the presence of a mixture of repetitive and unique DNA in these clones. After correction, a high content of repetitive DNA has been demonstrated for both species (D. buzzatii, 19-26%; D. koepferae, 27-32%). The repetitive sequences have been classified according to their hybridization pattern when used as probes against genomic DNA and by their in situ hybridization signals on polytene chromosomes. Data suggest that the main nonsatellite component of these species is simpler and more repetitive than that of D. melanogaster, pointing to a wide variability in content and class size distribution of repetitive DNA among Drosophila species.  相似文献   

15.
 The recent recovery of maize (Zea mays L.) single-chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses has provided novel source materials for the potential isolation of maize chromosome-specific sequences for use in genetic mapping and gene cloning. We report here the application of a technique, known as representational difference analysis (RDA), to selectively isolate maize sequences from a maize chromosome-3 addition line of oat. DNA fragments from the addition line and from the oat parent were prepared using BamHI digestion and primer ligation followed by PCR amplification. A subtractive hybridization technique using an excess of the oat parental DNA was employed to reduce the availability for amplification of DNA fragments from the addition lines that were in common with the ones from the oat parental line. After three rounds of hybridization and amplification, the resulting DNA fragments were cloned into a plasmid vector. A DNA library containing 400 clones was constructed by this method. In a test of 18 clones selected at random from this library, four (22%) detected maize-specific repetitive DNA sequences and nine (50%) showed strong hybridization to genomic DNA of maize but weak hybridization to genomic DNA of oat. Among these latter nine clones, three detected low-copy DNA sequences and two of them detected DNA sequences specific to chromosome 3 of maize, the chromosome retained in the source maize addition line of oat. The other eight out of the 13 clones that had strong hybridization to maize DNA detected repetitive DNA sequences or high-copy number sequences present on most or all maize chromosomes. We estimate that the maize DNA sequences were enriched from about 1.8% to over 72% of the total DNA by this procedure. Most of the isolated DNA fragments detected multiple or repeated DNA sequences in maize, indicating that the major part of the maize genome consists of repetitive DNA sequences that do not cross-hybridize to oat genomic sequences. Received: 18 November 1997 / Accepted: 12 March 1998  相似文献   

16.
Ribosomal DNA sequences in several species of the genus Entamoeba are highly repeated and display restriction fragment-length polymorphism (RFLP), which has been used to identify species and differentiate strains. However, the continuous variability of the non-transcribed repeat sequences in the ribosomal episome hinders an accurate typification. Looking for more reliable markers, we used DNA probes containing conserved sequences in the ribosomal episome — coding regions for the 16S and 5.8S rRNAs and transcribed spacers flanking the rDNA sequences, and the coding region for the 3 end of the 26S rRNA — to analyse hybridization patterns from five cloned pathogenic strains of Entamoeba histoiytica, two strains of the also pathogenic Entamoeba invadens and the non-pathogenic Laredo strain of Entamoeba moshkovskii. Our results provide reliable bases for the differentation of clones, strains and species of Entamoeba and the reconstruction of E. histolytica episomes. Differences in the number and length of rDNA-containing DNA fragments, previously observed by other investigators and confirmed by us, can be better defined by the present analysis.  相似文献   

17.
In some species of hagfish, the phenomenon of chromosome elimination occurs during embryogenesis. However, only two repetitive DNA families are known to be represented in chromosomes that are eliminated from somatic cells of the Japanese hagfish Eptatretus okinoseanus. Using molecular analyses, another germ line-restricted, highly repetitive DNA family has been detected in another Japanese hagfish, Paramyxine atami. The repeat unit of this family, which is 83 bp long, has been designated “EEPa1”, for Eliminated Element of P. atami 1. DNA filter hybridization using EEPa1 as a probe revealed that this family is shared among several species and is conserved in the germline DNA. Although eliminated, repetitive DNA that is shared interspecifically has not been reported in hagfish species, cases of chromatin diminution and chromosome elimination processes have been described previously in other organisms.The patterns and intensities of hybridization signals suggest that members of the repetitive DNA family defined by EEPa1 have undergone concerted molecular evolution. Received: 7 January 1997 / Accepted: 13 May 1997  相似文献   

18.
羚牛(Budorcas taxicolor)属偶蹄目(Artiodactyla)、牛科(Bovidae),为我国一类大型珍贵保护动物。我们从其基因组中克隆得到若干约800bp的BamHI高度重复序列并对部分克隆进行了序列测定,发现它们显示了很高的同源性。利用其中一个单元为探针,对限制酶消化后的羚牛基因组DNA作杂交分析,发现其杂交谱带不具有个体及亚种间特异性,说明该重复序列在羚牛基因组中具有保守的分布和排列。在牛科动物中,羚牛BamHI片段与绵羊属和山羊属的相关序列具有高度同源性,而与水牛和家牛序列差异较大。这些结果为羚牛与羊亚科物种亲源关系较近的分类学观点提供了分子生物学证据。有证据表明,这些片段可能代表羚牛染色体着丝点的卫星DNA单体。  相似文献   

19.
Whole genomic DNA-DNA hybridization has been a cornerstone of bacterial species determination but is not widely used because it is not easily implemented. We have developed a method based on random genome fragments and DNA microarray technology that overcomes the disadvantages of whole-genome DNA-DNA hybridization. Reference genomes of four fluorescent Pseudomonas species were fragmented, and 60 to 96 genome fragments of approximately 1 kb from each strain were spotted on microarrays. Genomes from 12 well-characterized fluorescent Pseudomonas strains were labeled with Cy dyes and hybridized to the arrays. Cluster analysis of the hybridization profiles revealed taxonomic relationships between bacterial strains tested at species to strain level resolution, suggesting that this approach is useful for the identification of bacteria as well as determining the genetic distance among bacteria. Since arrays can contain thousands of DNA spots, a single array has the potential for broad identification capacity. In addition, the method does not require laborious cross-hybridizations and can provide an open database of hybridization profiles, avoiding the limitations of traditional DNA-DNA hybridization.  相似文献   

20.
The organization and chromosomal distribution of the repetitive DNA component IB from Muntiacus muntjak vaginalis (MMV) was investigated. DNA fragments of component IB were cloned in cosmids and their structure analysed using restriction nucleases and blot-hybridization experiments. Two cosmids were found to be practically identical by restriction enzyme mapping. The repeat unit of component IB DNA is more than 40 kb and contains the 11 and 18 kb Bam HI fragments, which have previously been shown to cross-hybridize with MMV satellite IA. In addition, the repeat unit contains long stretches of DNA sequences which are unique to component IB. In situ hybridization experiments showed that component IB has the properties characteristic of long interspersed repetitive DNA rather than tandemly repeated satellite DNA. Consistent with this conclusion, only a minor fraction of component IB is located on the X chromosome as demonstrated by the analysis of somatic cell hybrids. This is in marked contrast to satellite IA that is specific for the X chromosome. These results have interesting implications for the evolution of the component I DNA family of the MMV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号