首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten species of benthic diatoms from the Eems-Dollard estuary were grown in axenic cultures under various combinations of irradiance and supply of organic substrates. Six species were capable of growth in the dark on yeast extract, casamino acids, or glucose. Four of these species grew best in the presence of glucose, whereas the growth of the other two species was supported only by yeast extract and casamino acids. The light limited growth rate of only those species that were also capable of heterotrophic growth in the dark was increased by organic substrates. The rate of this “mixed” growth together with the absence of a lag-phase upon change from autotrophic to heterotrophic conditions indicates the nutritional versatility of these diatom species. A positive relation between the organic matter content of the natural habitat and the heterotrophic capacities of the diatom species is suggested. All species with heterotrophic capacities were isolated from muddy sediments, whereas two species isolated from a sandflat seem to be obligately autotrophic. Also two species from muddy sediments apparently had no heterotrophic capacities. The cells of the six species with heterotrophic capacities differed from those of the four species without such capacities in their higher surface to volume ratio.  相似文献   

2.
Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic culture of Euglena gracilis were studied. Under a low light supply coefficient, these two metabolic activities seem to proceed independently. The cell growth rate in photoheterotrophic culture was about the sum of the growth rates in pure photoautotrophic and heterotrophic cultures. However under a high light supply coefficient, both photoautotrophic and heterotrophic (glucose assimilation) metabolic activities were inhibited, resulting in a low photoheterotrophic growth rate. The photoheterotrophic culture was more sensitive to photoinhibition compared to the pure photoautotrophic culture. Inhibition of glucose assimilation in the photoheterotrophic culture was due to both direct and indirect (through photosynthesis) effects of high light intensity. Cell growth, glucose assimilation and alpha-tocopherol content of the cells were higher when ambient air was used for aeration than when a mixture of carbon dioxide and air was used. Even when photosynthesis was inhibited by addition of 3-(3,4-dichlorophenyl)- 1,1-dimethylurea to photoheterotrophic culture, light stimulated alpha-tocopherol synthesis by E. gracilis.  相似文献   

3.
Members of the SAR11 clade often dominate the composition of marine microbial communities, yet their contribution to biomass production and the flux of dissolved organic matter (DOM) is unclear. In addition, little is known about the specific components of the DOM pool utilized by SAR11 bacteria. To better understand the role of SAR11 bacteria in the flux of DOM, we examined the assimilation of leucine (a measure of biomass production), as well as free amino acids, protein, and glucose, by SAR11 bacteria in the Northwest Atlantic Ocean. We found that when SAR11 bacteria were >25% of total prokaryotes, they accounted for about 30 to 50% of leucine incorporation, suggesting that SAR11 bacteria were major contributors to bacterial biomass production and the DOM flux. Specific growth rates of SAR11 bacteria either equaled or exceeded growth rates for the total prokaryotic community. In addition, SAR11 bacteria were typically responsible for a greater portion of amino acid assimilation (34 to 61%) and glucose assimilation (45 to 57%) than of protein assimilation (< or = 34%). These data suggest that SAR11 bacteria do not utilize various components of the DOM pool equally and may be more important to the flux of low-molecular-weight monomers than to that of high-molecular-weight polymers.  相似文献   

4.
Glucose and galactose uptake ability in Cyclotella cryptica (clone WT-1-8) and glucose uptake ability in Coscinodiscus sp. develop rapidly in the dark. Induction of sugar uptake ability in the dark does not require the presence of sugar in the medium. The sugars are taken up by carrier-mediated systems. In C. cryptica glucose and galactose are probably taken up by the same system. The capacity of glucose uptake in this recently isolated clone of C. cryptica is nearly 5 times that of a previously studied clone (0-3A). Other organic compounds, which by themselves do not support heterotrophic growth, can be taken up and respired by both diatoms at considerable rates compared, to glucose and galactose. Therefore, in nature, these diatoms may be able to utilize a variety of dissolved organic compounds as sources of intermediary metabolites and as respiratory substrates.  相似文献   

5.
Members of the SAR11 clade often dominate the composition of marine microbial communities, yet their contribution to biomass production and the flux of dissolved organic matter (DOM) is unclear. In addition, little is known about the specific components of the DOM pool utilized by SAR11 bacteria. To better understand the role of SAR11 bacteria in the flux of DOM, we examined the assimilation of leucine (a measure of biomass production), as well as free amino acids, protein, and glucose, by SAR11 bacteria in the Northwest Atlantic Ocean. We found that when SAR11 bacteria were >25% of total prokaryotes, they accounted for about 30 to 50% of leucine incorporation, suggesting that SAR11 bacteria were major contributors to bacterial biomass production and the DOM flux. Specific growth rates of SAR11 bacteria either equaled or exceeded growth rates for the total prokaryotic community. In addition, SAR11 bacteria were typically responsible for a greater portion of amino acid assimilation (34 to 61%) and glucose assimilation (45 to 57%) than of protein assimilation (≤34%). These data suggest that SAR11 bacteria do not utilize various components of the DOM pool equally and may be more important to the flux of low-molecular-weight monomers than to that of high-molecular-weight polymers.  相似文献   

6.
Navicula pavillardi Hustedt, a marine, littoral, pennate diatom, can grow in the dark on glutamate or on the complex organic supplements tryptone or yeast extract. Growth on glutamate in the dark took place without an initial lag phase, whereas growth on tryptone began only after a 2-day lag phase that could be abolished by the simultaneous presence of glucose. Lactate inhibited growth in the dark on glutamate, but not photoautotrophic growth. Relatively low concentrations of glutamine inhibited photoautotrophic growth. The observed doubling time for heterotrophic growth on glutamate or tryptone was about 70 h, compared with a doubling time of 24 h under optimal photoautotrophic conditions. Glucose did not decrease the doubling time in the dark on tryptone. The assimilation efficiency for glutamate was 41%. The estimated necessary uptake rate for glutamate to account for the observed heterotrophic doubling time on glutamate was close to those measured with isotope techniques. The kinetic parameters for glutamate uptake, which followed Michelis-Menten kinetics, were Ks = 0.018 mM, and Vmax = 7.0 X 10(-10) mumol per cell per minute. Although several amino acids served as sole nitrogen sources for photoautotrophic growth and were demonstrated by the use of isotope techniques to enter the cells, they could not be used as substrates for growth in the dark. Glucose was not taken up to a significant extent except by cells grown in the presence of tryptone. Lactate was taken up only by dark-grown cells. Results of preliminary studies on the metabolic fate of several uniformly labeled amino acids are presented.  相似文献   

7.
Plant-carbon inputs to soils in the form of dissolved sugars, organic acids and amino acids fuel much of heterotrophic microbial activity belowground. Initial residence times of these compounds in the soil solution are on the order of hours, with microbial uptake a primary removal mechanism. Through microbial biosynthesis, the dissolved compounds become dominant precursors for formation of stable soil organic carbon. How the chemical class (e.g. sugar) of a dissolved compound influences stabilization in field soils is unknown and predictions from our understanding of microbial metabolism, turnover and identity are contradictory. We show that soil carbon formation, from chronic amendments of dissolved compounds to fertilized and unfertilized grasslands, is 2.4-times greater from a sugar than an amino acid. Formation rates are negatively correlated with respiration rates of the compounds, and positively correlated with their recovery in microbial biomass. These relationships suggest that the efficiency of microbial growth on a compound is positively related to formation rates of soil organic carbon. Fertilization does not alter these findings, but together nitrogen and phosphorus additions reduce soil carbon formation. Our results highlight the need to consider both nutrient enrichment and global-change induced shifts in the form of dissolved root inputs to soils to predict future soil carbon stocks and hence phenomena such as climate warming and food security to which these stock sizes are intimately tied.  相似文献   

8.
索罗金小球藻异养转自养过程中基因表达的全局调控   总被引:1,自引:0,他引:1  
为提高异养条件下索罗金小球藻(Chlorella sorokiniana)蛋白质含量,扩大该藻株在食品和饲料领域的应用,研究发现当异养条件下培养的C. sorokiniana GT-1细胞转入光自养培养条件后,蛋白质含量显著提高。通过转录组学分析揭示了C. sorokiniana GT-1在异养转自养过程中基因表达发生全局变化,其中糖酵解途径与磷酸戊糖途径上调,氮转运和同化途径中的关键酶的编码基因明显上调,且谷氨酸族氨基酸和丙酮酸族氨基酸的生物合成途径的多个酶在转录水平上显著增强。研究还发现在异养条件下藻细胞仍然可以表达部分光合作用蛋白的编码基因,当转入光自养条件后24h内绝大多数光合作用相关蛋白编码基因的转录被激活。结果表明在异养转自养条件过程中蛋白质含量的升高与氮的吸收及利用增加、还原能合成的增强、部分氨基酸的合成上调及光合作用蛋白质的大量合成有关。研究为后续如何通过培养条件优化或代谢工程改造提高C. sorokiniana GT-1产蛋白质的能力提出了新的思路。  相似文献   

9.
Phototrophic epilithic biofilms harbour a distinct assemblage of heterotrophic bacteria, cyanobacteria and photoautotrophic algae. Secretion of extracellular polymeric substances (EPS) by these organisms and the physicochemical properties of the EPS are important factors for the development of the biofilms. We have isolated representative diatom and bacteria strains from epilithic biofilms of Lake Constance. By pairwise co-cultivating these strains we found that diatom growth and EPS secretion by diatoms may depend on the presence of individual bacteria. Similar results were obtained after addition of spent bacterial medium to diatom cultures, suggesting that soluble substances from bacteria have an impact on diatom physiology. While searching for putative bacterial signal substances, we found that concentrations of various dissolved free amino acids (DFAA) within the diatom cultures changed drastically during co-cultivation with bacteria. Further, the secretion of extracellular carbohydrates and proteins can be influenced by bacteria or their extracellular substances. We have performed mass spectrometric peptide mapping to identify proteins which are secreted when co-cultivating the diatom Phaeodactylum tricornutum Bohlin and Escherichia coli. The identified proteins are possibly involved in signalling, extracellular carbohydrate modification and uptake, protein and amino acid modification, and cell/cell aggregation of diatom and bacteria strains. Our data indicate that diatom-bacteria biofilms might be regulated by a complex network of chemical factors involving EPS, amino acid monomers and other substances. Thus interactions with bacteria can be considered as one of the main factors driving biofilm formation by benthic diatoms.  相似文献   

10.
Chlorella sp. strain VJ79 was isolated from a total heterotrophic count of a wastewater collector. It grows autotrophically, heterotrophically, and mixotrophically on a variety of organic substrates. Glucose and serine promote a mixotrophic growth from which the yield is higher than the sum of autotrophic and heterotrophic yields, but serine assimilation requires light. The interaction of glucose and light was studied in proliferating and nonproliferating cells by respirometry (IRGA and Warburg) and growth experiments. Glucose inhibits the photosynthetic CO(2) fixation ten-fold and modifies the pigmentary system as it does in heterotrophic cultures. Light inhibits glucose uptake and assimilation, but under mixotrophic conditions maximal utilization of glucose is obtained. Mutants defective in autotrophic growth were isolated by mutagenesis with nitrosoguanidine. They show a degenerated pigmentary system and a mixotrophic growth yield equal to that of the heterotrophic growth. The analysis of the mixotrophic system shows that light energy, dissipated during autotrophic growth, is used under mixotrophic conditions. From the increase in growth, the increase in photosynthetic efficiency can be calculated as ca. sixfold.  相似文献   

11.
12.
Seston in salt marshes contains a temporally and spatially complex mixture of natural microparticulate organic material, including phytoplankton, vascular plant detritus, bacteria, heterotrophic nanoflagellates and benthic diatoms. Quantitative information is available concerning how suspension-feeding consumers, such as the ribbed mussel, Geukensia demissa (Dillwyn), utilize some of these components to satisfy their carbon demands. Despite this information there is still a limited understanding of how the relative nutritive contribution of these different dietary items may shift during the year associated with variations in both seston composition and the mussel's physiological condition. To investigate if the mussel's ability to use specific constituents of natural seston varies seasonally, we ran a series of pulse-chase 14C feeding experiments under ambient conditions in March, May, August and November 1996. Phytoplankton, cellulosic detritus, bacteria, heterotrophic nanoflagellates and benthic diatoms were radiolabeled and supplemented in small amounts to natural marsh water for feeding to mussels. The fate of 14C in mussel tissues, feces, respiration and excretion was quantified and contrasted among the different diet types and seasons. Microcapsules containing radiolabeled carbohydrate and protein were used as standards to differentiate possible between-experiment variations in seston composition from seasonal changes in the mussel's feeding and digestive physiology. Mussel clearance rates for all diets were highest in summer and autumn and lowest in winter and spring. In contrast, seasonal shifts in digestive physiology were only found for certain diets. The seasonal range of assimilation efficiencies for microcapsule standards (18-29%) and field-collected microheterotrophs (bacteria 76-93% and heterotrophic nanoflagellates 87-94%) did not differ significantly during the year, whereas summer and autumn assimilation efficiencies for cellulosic detritus (22-24%), phytoplankton (71-79%) and benthic diatoms (89-93%) were up to twofold greater than those in winter and spring (13%, 40-59% and 45-81%, respectively). We conclude that the digestive physiology (e.g., digestive enzyme production) of mussels responds to shifts in dietary components during the year.  相似文献   

13.
The kinetics of Bacillus thuringiensis growth and its assimilation of nutrient substances were studied under the conditions of batch cultivation in a complex medium containing yeast extract and in a chemically defined medium with amino acids. The growth of B. thuringiensis can be divided into five phases: exponential growth; decelerated growth; stationary phase when protein crystals are formed; stationary phase when spores are formed; lysis of sporangia releasing spores. The first phase may in turn be subdivided into three stages according to changes in the specific growth rate and substrate assimilation: a high specific growth rate and no glucose assimilation; an abrupt drop in mu and the beginning of intensive glucose assimilation from the medium; a new rise in the specific growth rate. As follows from the results of studying the kinetics of B. thuringiensis growth in a chemically defined medium, the above changes in the exponential growth phase are due to the fact that the culture assimilates yeast extract components in the complex medium or amino acids in the chemically defined medium during this phase, and then starts to assimilate glucose and ammonium in the following phases of growth.  相似文献   

14.
Köhler  Jan  Nixdorf  Brigitte 《Hydrobiologia》1994,(1):187-195
The influences of imports of nutrients and planktonic algae from the River Spree on the dynamics of phytoplankton were examined in the shallow, eutrophic Müggelsee, which has a retention time of only 42 days. Phytoplankton biomass and nutrient concentrations were measured in both the lake and its inflow from 1980–1990. On a long-term average, mean biomass as well as vitality of most dominant phytoplankton populations in the lake were not significantly different from those in the river. Nevertheless, during distinct periods the external rates of biomass change of single lake populations (due to dilution or enrichment) were as high as the lake internal ones. The import of inocula populations from the river probably induced the formation of the typical community structure in the lake. Growth and decay of phytoplankton populations in the river strongly influenced the load of dissolved nutrients and thus indirectly the dynamics of planktonic algae in the downstream lake. For example, intensive assimilation of phosphorus by riverine algae in spring intensified the P-shortage and supported possible P-limitation of algal growth in the lake at that time. In years with high vernal biomass of centric diatoms in the river, and thus diminished import of dissolved silicon, the growth of diatoms was suppressed and that of cyanobacteria was favoured in the lake during summer.  相似文献   

15.
16.
Motivated by the finding that Pseudomonas knackmussii B13 but not Rhodococcus opacus 1CP grows in the absence of externally provided CO(2), we investigated the assimilation of (13)CO(2) into active cells cultivated with non-labelled glucose as sole energy substrate. (13)C found in the bulk biomass indicated a substantial but different CO(2) assimilation by Pseudomonas and Rhodococcus, respectively (3500 per thousand and 2600 per thousand). Cellular fatty acids were labelled from -15 per thousand to 470 per thousand and amino acids from 500 per thousand to 24,000 per thousand demonstrating clear differences between various compound classes. 'You are what you eat plus 1 per thousand' is therefore only valid for the average bulk C without specific isotope signature deviation of the external CO(2) or carbonates. Odd-numbered and 10-methyl fatty acids, which are much more abundant in Rhodococcus or other Gram-positive bacteria, were up to fivefold higher enriched in (13)C relative to the Pseudomonas fatty acids. A high-level growth-phase-independent, labelling of the oxaloacetate-derived amino acids indicated heterotrophic CO(2) fixation by anaplerotic reactions known to replenish the tricarboxylic acid cycle. Although both strains assimilate CO(2) via similar general pathways, Rhodococcus depends to a much higher extent on carboxylations reactions with external CO(2) owing to the formation of odd-numbered fatty acids. As a general consequence, heterotrophic fixation of CO(2) should be taken into account in investigations of degradation experiments using isotope tracer compounds.  相似文献   

17.
Summary The leaching of six Eastern coals was investigated using experimental coal columns subjected to simulated leaching events. Measurements of CO2 assimilation and specific enrichment cultures indicated that the microbial communities of all leachates were dominated by iron- and sulfur-oxidizing chemoautotrophic bacteria. Comparison of CO2 assimilation rates in leachates and core samples of leached coal indicated that most chemoautotrophs remained within coal columns during leaching. Mean numbers of chemoautotrophic bacteria in leachate samples were correlated with concentrations of dissolved iron and sulfate. Leachates from unwashed, run-of-mine coals contained more chemoautotrophs and more iron and sulfate than did leachates from washed, final product coals. After several leachings, the ratio of sulfur oxidizers to iron oxidizers tended to increase. These data suggest that the chemoautotrophic community of final product coals may be pyritelimited. Aerobic heterotrophs constituted a minor component of the microbial community in leachates from the six coals and their abundance and metabolic activity were apparently not influenced by the beneficiation history of the coal. Changes in rates of acetate metabolism may have been related to microbial succession within the heterotrophic community of coal columns. In all leachates, rates of tritiated methylthymidine assimilation were correlated with rates of acetate incorporation but not with CO2 assimilation, even though autotrophs dominated the microflora. Thus, thymidine assimilation rates appear to reflect activities or growth of mainly heterotrophic microorganisms in leachate.  相似文献   

18.
Ammonia-oxidizing archaea (AOA) constitute a considerable fraction of microbial biomass in the global ocean, comprising 20%–40% of the ocean's prokaryotic plankton. However, it remains enigmatic to what extent these chemolithoautotrophic archaea release dissolved organic carbon (DOC). A combination of targeted and untargeted metabolomics was used to characterize the exometabolomes of three model AOA strains of the Nitrosopumilus genus. Our results indicate that marine AOA exude a suite of organic compounds with potentially varying reactivities, dominated by nitrogen-containing compounds. A significant fraction of the released dissolved organic matter (DOM) consists of labile compounds, which typically limit prokaryotic heterotrophic activity in open ocean waters, including amino acids, thymidine and B vitamins. Amino acid release rates corresponded with ammonia oxidation activity and the three Nitrosopumilus strains predominantly released hydrophobic amino acids, potentially as a result of passive diffusion. Despite the low contribution of DOC released by AOA (~0.08%–1.05%) to the heterotrophic prokaryotic carbon demand, the release of physiologically relevant metabolites could be crucial for microbes that are auxotrophic for some of these compounds, including members of the globally abundant and ubiquitous SAR11 clade.  相似文献   

19.
The non-protein amino acids, -alanine and -aminobutyric acid, frequently dominate the amino acid composition of deep-sea sediments. This accumulation is most likely due to the slower decomposition of non-protein amino acids by microorganisms or to the preferential adsorption of non-protein amino acids by clay minerals. We investigated relative rates of heterotrophic uptake of alanine, -ala, and -aba in sea water to see if there were different rates of microbial assimilation and respiration between these protein and non-protein amino acids. Heterotrophic uptake was rapid for all three amino acids with turnover times of hours in productive coastal waters and days in more oligotrophic open-ocean waters. Uptake of the non-protein amino acids was significantly slower than uptake of alanine, particularly in anoxic waters. However, the difference in uptake rates is probably not great enough to cause significant preferential accumulation of non-protein amino acids.  相似文献   

20.
When incubated at pH 4–5, Chlorella freshly isolated from symbiosis with Hydra viridissima PALLAS 1766 (green hydra) release large amounts of photosynthetically fixed carbon in the form of maltose, and assimilation of inorganic N is inhibited. Physiological responses to N starvation of the cultured 3N813A strain of maltose-releasing Chlorella differed from those caused by 48 h of maltose release induced by low pH. N starvation increased rates of ammonium assimilation at pH 7.0 in light or darkness, and ammonium assimilation in darkness stimulated cell respiration. In contrast, cells pretreated at pH 5.0 to induce maltose release were unable to take up ammonium at pH 7.0 unless supplied with an external carbon source such as bicarbonate, acetate, or succinate, and rates of uptake were similar to control cells. Freshly isolated symbionts displayed a similar dependency. Rates of ammonium uptake by cells pretreated at pH 5.0 were reduced in darkness and did not stimulate cell respiration. N-starved cells supplied with ammonium also showed a large short-term increase in glutamine pools at the expense of glutamate, as might be expected if large amounts of ammonium were rapidly assimilated via glutamine synthetase/glutamate synthase, whereas after long-term maltose release cells showed only a small increase in glutamine when supplied with ammonium. Furthermore, maltose release caused a fall in pool sizes of a number of amino acids, including glutamine and glutamate, and also caused a decrease in pool sizes of 2-oxoglutarate and phospho-enol-pyruvate, which are required for ammonium assimilation into amino acids. Cells stimulated to synthesize and release maltose may be unable to assimilate ammonium and synthesize amino acids because of diversion of fixed carbon from N metabolism. We estimate that 40–50% affixed C is required for maximal maltose synthesis, whereas up to 30% fixed C is required for ammonium assimilation. These results are discussed in the context of host regulation of symbiotic algal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号