首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protonephridial system consists of terminal cell, protonephridial capillary, protonephridial tubule and efferent duct. The terminal cell is an elongated, thin-walled, fenestrated basket containing a ciliary flame circumscribed by a palisade of straight microvilli. The filtration area is confined to the terminal cell and consists of slits bridged by a filtration membrane. The cilia, as well as the microvilli, projects into the proximal bell-shaped part of the thin-walled protonephridial capillary. The terminal cells are often found in pairs connected to the same capillary, which has a very narrow lumen. The proximal part of the thick-walled, convoluted protonephridial tubule is ciliated and shows characteristic foldings of the luminal plasma membrane and numerous small vesicles in the cytoplasm. The cells of the following, non-ciliated part of the tubule have interdigitating lateral surfaces and the bases deeply invaginated to form compartments with numerous mitochondria; in the cytoplasm are many large vesicles, possibly containing lipid droplets, and small amounts of glycogen. The distal protonephridial tubule resembles various epithelia with an osmoregulatory function, including the vertebrate nephron.  相似文献   

2.
Summary The actinotrocha of Phoronis muelleri has one pair of ectodermally derived, monociliated protonephridia. The duct runs mainly between the epidermis and the lining of the hyposphere coelom, pierces the septum and extends into the blastocoel. The proximal part is branched and closed up by terminal complexes consisting of two morphologically different cells which both serve filtration. During metamorphosis, the terminal complexes and the branches of the duct are cast off. The cells degenerate, pass into the remaining duct and are endocytosed by the duct cells. After metamorphosis the remaining part of the protonephridial duct is U-shaped, blindly closed and borders on the prospective lophophoral vessel. In a later stage the duct receives a ciliated funnel, which consists of monociliated epithelio-muscle cells and is a derivative of the lining of the metacoel. Thus, a part of the protonephridial duct of the larva and the whole metanephridial duct of the adult are identical. Aspects of a possible homology between phoronid nephridia and such organs in other bilaterians are discussed.  相似文献   

3.
Among other characteristics a trimeric coelomic compartmentation consisting of an anterior protocoel, followed by a mesocoel and a posterior metacoel is traditionally believed to substantiate the sister-group relationship between Lophophorata and Deuterostomia, together forming the Radialia. As molecular data cannot support this hypothesis a reanalysis of the coelomic cavities in Phoronida is undertaken, because corresponding coelomic compartmentation is widely accepted to support the Radialia hypothesis. A coelomic cavity can be recognized on the ultrastructural level because its lining is a true epithelium with polarized cells interconnected by apical adherens junctions. This study reveals that neither in larval nor adult Phoronis muelleri (Phoronida) an anterior cavity with such a lining is present. What on the light microscopic level leads to the impression of a cavity inside the larval episphere, actually is an enlarged subepidermal extracellular matrix with an amorphous, presumably gel-like filling, into which several muscle cells are embedded. Larvae, thus, possess only one coelomic cavity, the large trunk coelom of the larva which is adopted in the adult organization. The second coelomic cavity of adult P. muelleri, the lophophore coelom, develops as a double-layer of epithelialized mesodermal cells at the base of the adult tentacle buds and becomes fluid filled during metamorphosis. Like the larval episphere, larval tentacles and most parts of the blastocoel are filled by an amorphous matrix. Reanalysis of the literature and comparison with Brachiopoda and Bryozoa allows the hypothesis that a protocoel is lacking in all Lophophorata, and that merely two unpaired coelomic cavities, one tentacle and one trunk coelom, can be assumed for the ground pattern of this taxon. These results do not provide further evidence for the Radialia hypothesis, but also do not contradict it. Accepted: 28 August 2000  相似文献   

4.
Summary The nervous system of the actinotroch larva of Phoronis muelleri has been investigated with the transmission electron microscope (TEM). Attempts have been made to localize all of the major nerves and to reveal the cytoarchitecture of the apical ganglion. The nervous system is intraepithelial in position and consists of an apical ganglion, located on the epistome, with at least four different cell types, including monopolar sensory cells and mono- or multipolar neuron-like cells. From the anterior part of the apical ganglion three median nerves extend to the edge of the epistome; two of these nerves connect to nerves which follow the edge of the epistome all the way to the junction of the epistome and the mesosome. From the posterior part of the ganglion extend two lateral nerves which continue along the tentacular ring. Each tentacle has three nerves located on the frontal side which connect to the nerve ring along the tentacles. Along the posterior ciliary band is a minor nerve ring. In addition, a nerve net is found on the epistome, mesosome, and metasome, but no longitudinal nerves were observed between the posterior ciliary band and the apical ganglion. All nerve cells were found in the apical ganglion and none was observed along the nerves. Sensory cells (probably mechanoreceptors) are located in two rows on each tentacle; sensory organs such as eyes and statocysts were not observed.Abbreviations ac accessory centricle - aen anterior epistome edge nerve - af abfrontal cells - bl basal lamina - bl.c blastocoel coelomocyte - ci cilium - co collar - cp cell process - cr ciliary root - ec 1 epistome edge cell type 1 - mne mouth nerve ring - mo mouth - mp metasomal pouch - ms mesosome - mt metasome - mu muscle - n nerve process - ne nerve - np neuropil - nu nucleus - pc 1 posterior ciliary band cell type 1 - ec 2 epistome edge cell type 2 - ec 3 epistome edge cell type 3 - epi epidermis - es epistome - ese epistome edge - fc frontal cell - gc 1 type 1 ganglion cells - gc 2 type 2 ganglion cells - gc 3 type 3 ganglion cells - ge gut epithelium - ij intermediate junction - laf lateroabfrontal cell - lc lateral cell - lfc laterofrontal cell - lgc lateral ganglion cell - me metacoel epithelium - lne longitudinal median epistome nerves - pc 2 posterior ciliary band cell type 2 - pc procoel - pe procoel epithelium - pen posterior epistome edge nerve - pr posterior ciliary band - p.rec proximal recess of procoel epithelium - prne nerve ring along posterior ciliary band - sj septate junction - sne secondary nerve along the tentacular ring - t tentacle - tr tentacular ring - trne horseshoe-shaped nerve along the tentacular ring  相似文献   

5.
6.
7.
Sexually mature adults, embryos and larvae of the pterobranch Rhabdopleura normani from Bermuda were studied with light and electron microscopy. The sexes are separate among the zooids of a colony, but a given colony may contain females and males. In zooids of either sex the single gonad is associated with a large haemal sinus in the trunk sac and is displaced laterally (to the right or to the left). The wall of the gonad is composed of three layers: an outer metasomal peritoneum, an internal lining of germinal epithelium and an intervening genital haemal sinus. The mature gametes lie in the lumen within the gonad. The spermatozoon is characterized by an elongate nucleus, no obvious acrosome, a long mitochondrial filament in a midpiece appendix and a single flagellum with a 9+2 axoneme. Females brood 200 μm eggs and embryos in their distinctive, basally coiled tubes. The yolky eggs undergo radial cleavage and develop into ciliated, lecithotrophic, oblong larvae (400 μm in length) that are characterized by: (1) yellow coloration peppered with black pigment spots; (2) a deep ventral depression; (3) a posterior adhesive organ; (4) an anterior apical sensory organ; (5) an evenly ciliated epitdermis. The ventral depression is not invaginating endoderm, but is instead a glandular epithelium that evidently secretes the larval cocoon and the adult tube. Internally, the peritoneum of the coelomic cavities begins to split from the periphery of a large, central mass of yolky mesenchyme cells. The larva swims using cilia, but also undergoes contractions, evidently powered by the peritoneal cells, which constitute a myoepithelium. The discussion considers pterobranch affinities with other deuterostomes and with lophophorates.  相似文献   

8.
The oral papilla is a prominent larval organ in the lancelet, which develops early during ontogenesis and disappears completely at metamorphosis. Electron microscopic studies indicated that the prevailing theories of its function are unlikely. Its cells lack the cytological characteristics of sensory or mucus producing cells, and the organ is not equipped with a tuft of flagella. It was not possible to reveal the function of the papilla, but its cells seem to be involved in a pronounced substance transport through the basal cell membrane as well as in the cytoplasm. Apical specializations indicate exo- or endocytotic activity and vesicles imply some exchange also between papilla cells and the sea water.  相似文献   

9.
The larval development ofPhoronis psammophila Cori is divided into 6 phases (on the basis of increasing pairs of larval tentacles); furthermore an initial and a ripe phase are distinguished. Specific aspects of the development are described: Formation and structure of larval tentacles; anlage of adult tentacles as a thickening in the larval tentacle base; late development of the metasome (larva with 4–6 tentacles); formation of the metasome pouch in the larva with 8 tentacles; enlargement of the apical plate; differentiation of the gut; differentiation of larval nephridia; formation of pigment particles in the larva with 6 tentacles (storage function of pigments and its significance for larval identification); different types of discoflagella in various regions of the body. The larval development shows the following tendencies: Improvement of locomotion; intensification of food filtration; anlage of adult organs in the larva leading to a shortening of metamorphosis duration. The larva ofP. psammophila is compared with those ofP. pallida, P. hippocrepia, andP. vancouverensis. Earlier larval determinations ofP. psammophila (e.g.Actinotrocha sabatieri, A. hatschekii) are shown to have been mistakes. Termination of the postembryonic phase (metamorphosis) can be induced experimentally by bacteria and also by cations. Pure or mixed bacteria cultures must be present at the beginning exponential growth phase. The bacteria density required is 20–94×106 bact.ml?1 for pure cultures and on the average 28×106 bact. ml?1 for mixed cultures. Metamorphosis initiation by cations can be induced with CsCl (0.06 M) and RbCl (0.035 M). Metamorphosis ofP. psammophila occurs in 6 phases: larva, ready for metamorphosis; larva, activated by bacteria or ions; evagination of the metasome diverticle, dislocation of gut; losing and swallowing of episphaere and larval tentacles; formation of the youngP. psammophila. All developmental phases are described and compared with those ofP. muelleri; imperfect metamorphosis is characterized and the youngP. psammophila compared with older stages and the adult Phoronis.  相似文献   

10.
Phoronid larvae were found in planktonic samples from the northern coast of Terpeniya Bay. In some samples, their density was up to 220 specimens/m3. Larval stages having 10, 12, 16, 20, and 22 tentacles are described. Larvae were identified as Actinotrocha branchiata and belong to the species Phoronis muelleri Selys-Longchamps, 1903. However, unlike the Ph. muelleri larvae described in the literature, the larvae we found are smaller (not more than 900 μm) before metamorphosis and have fewer tentacles (24). They lack paired vacuolated diverticula of the stomach, which are characteristic of Ph. muelleri larvae. However, judging by all other characters, namely transparency, the absence of coelomic cylinder in the preoral lobe, and the presence of adult tentacle primordia, one pair of blood cell aggregations, and a pyriform organ, these larvae are similar to the previously described larvae of Ph. muelleri. Adult forms of Ph. muelleri were previously found in Terpeniya Bay and described by Mamkaev (1962) and Emig (1984).  相似文献   

11.
Temereva, E.N., Malakhov, V.V. and Yushin, V.V. 2011. Ultrastructural study of oogenesis in Phoronopsis harmeri (Phoronida). —Acta Zoologica (Stockholm) 92 : 241–250. The successive stages of oogenesis in Phoronopsis harmeri were examined by electron microscopy methods. During the oogenesis, each oocyte is encircled by vasoperitoneal (coelomic) cells forming a follicle. The previtellogenic oocytes are small cells which accumulate ribosomes for future synthesis; their cytoplasm contains characteristic clusters of mitochondria and osmiophilic particles resembling a germ plasm of other metazoans. The cytoplasm of the vitellogenic oocytes includes numerous mitochondria, cisternae of the rough endoplasmic reticulum, Golgi bodies and annulate lamellae. The synthesis of three types of inclusions was observed: strongly osmiophilic granules (lipid droplets) as a prevalent component, distinctly larger granules surrounded by membrane (proteinaceous yolk) and numerous large vesicles with pale flocculent content. No inclusions which could be unequivocally interpreted as the cortical granules were detected. The surface of the vitellogenic oocytes is covered by microvilli which increase in number and length during development. The oogenesis in Phoronida may be interpreted as follicular because of close association of oocytes with the vasoperitoneal tissue. However, well‐developed synthetic apparatus together with a strongly developed microvillous surface and absence of endocytosis indicate a clear case of autosynthetic vitellogenesis. Thus, in phoronids, there is a combination of simply developed follicle and autosynthesis that, apparently, is plesiomorphic character.  相似文献   

12.
The organization of the lophophore is the main feature used for the identification of phoronid species. The structure of the lophophore and tentacles in seven phoronid species (Phoronis ovalis, P. ijimai, P. hippocrepia, P. svetlanae, P. australis, Phoronopsis harmeri, and Ph. malakhovi) collected in different areas of the World Ocean was studied. Two new patterns of the phoronid lophophore structure were found: “transition to horseshoe-shaped” (as in P. ovalis from Aniva Bay and in P. ijimai from the coast of Iturup Island, Sea of Okhotsk) and “transition to spiral” (in burrowing specimens P. hippocrepia from Aniva Bay, P. svetlanae and Ph. harmeri from Vostok Bay, Sea of Japan). For the first time it was shown that phoronid species with different types of the lophophore structure possess different kinds of tentacles. Thus, five types of phoronid tentacles were identified that vary in the shape of their cross section: rounded, oval, ellipsoid, rectangular, and skittle-shaped. A correlation was found between lophophore organization and the type of tentacles in phoronids. A table of the correlation between body size, lophophore organization, tentacle structure, and mode of life in different phoronid species is proposed.  相似文献   

13.
14.
The epidermis of the tentacles of Phoronis australis consists of six cell types: supporting cells, choanocyte-like sensory cells, both types monociliated, secretory A-cells with a mucous secretion, and three kinds of B-cells with mucoprotein secretions. On cross-sections of the tentacle, one can distinguish four faces: the frontal one, heavily ciliated and located between the two frontolateral rows of sensory cells, the lateral and the abfrontal ones. The orientation of the basal structures of the cilia is related to the direction of their beat. The basiepidermal nervous system is grouped mainly at the frontal and abfrontal faces. The basement membrane is thickest on the frontal face and consists of circular collagen fibrils near the epidermis and longitudinal ones near the peritoneum. All peritoneal cells surrounding the mesocoel are provided with smooth longitudinal myofibrils, and isolated axons are situated between these cells and the basement membrane. The wall of the single blood capillary in each tentacle consists of epitheliomuscular cells with circular myofilaments, lying on a thin internal basal lamina; there is no endothelium.  相似文献   

15.
16.
The view that early cleavage in Phoronida follows a radial pattern is widely accepted. However, data supporting this characterization are ambiguous. Studies have been repeatedly reporting variation between individual embryos, and the occurrence of embryos exhibiting oblique divisions or nonradial cell arrangements. Such embryos were often considered to represent variation within radial cleavage, or artificial appearances. Cleavage in Phoronis muelleri was previously characterized as “derived radial,” but also oblique spindles and cell elongations, and shifted cell arrangements were observed. We studied the early cleavage in P. muelleri applying 4D microscopy, fluorescent staining, and confocal laser scanning microscopy. To deal with the problem of variation we provide statistical evaluations of our data. These show that oblique divisions do not represent variational abnormalities. In fact, they reveal that most cells divide obliquely from the third cleavage onwards. What is more, in almost all cells the axis of the third cleavage is inclined dextrally. The fourth cleavage is even stronger sinistrally pronounced. Subsequently, the pattern of alternating cleavage orientation is largely restricted to animal and vegetal blastomeres. As a result of the obliqueness of divisions, four cells encircle the poles in most embryos. Cross furrows are occasionally present. We found no indications for radial cleavage in P. muelleri. In contrast, the observed cleavage displays several characters consistent with the pattern of spiral cleavage. A close relation of phoronid and spiralian cleavage is also suggested by molecular phylogenies, allying both groups in the Lophotrochozoa. We suggest our findings to represent morphological support for this lophotrochozoan/spiralian affinity of Phoronida.  相似文献   

17.
The first instar larva of the net-winged midge, Nothohoraia micrognathia Craig, 1969 (Diptera: Blephariceridae) is described. Instead of the primitive ring of eversible hooklets the pseudopods possess stiff apical setae. This character expression suggests that Nothohoraia is more closely related to the advanced Apistomyiini occurring outside New Zealand than to the two other New Zealand genera, Neocurupira and Peritheates.  相似文献   

18.
Embryology of Phoronida   总被引:1,自引:1,他引:0  
Fertilization in the Phoronida appears to be internal. Threedifferent types of eggs were found: (1) Eggs rich in yolk, about125µ in diameter, which are retained in the parent's tube,without a true pelagic life; (2) Eggs moderately rich in yolk,about 100 µ in diameter, brooded up to the actinotrochstage in the lophophoral concavity owing to the nidamental glands,with a more or less long pelagic life; (3) Eggs, yolk-poor,about 60 µ. in diameter, which are directly dischargedinto sea-water and which have a long pelagic life. Cleavage in the Phoronida is total, equal or subequal. The patternis typically radial though biradial in some stages, but thereare instances in which the blastomeres exhibit a spiral appearance. The gastrula arises generally by emboly. The blastocoel is extensivein embryos of type 3 (see above) and virtually obliterated bywall compression in type 2. The blastopore is reduced to ananterior remnant. The differentiation of the ectoderm leads to the formation ofthe preoral lobe, the apical plate, the tentacular ridge, thenephridial anlage, the oesophagus (issued from the posteriorpart of the vestibule) and the mouth which does not originateas a stomodeum; the blastopore is located between oesophagusand stomach. Differentiation of the archenteron (endoderm) produces the stomach,the intestine and the anus which opens by perforation of theectoderm, without formation of a proctodeum. The anus appearsto be independent of the blastopore. The mesodern originates as isolated cells proliferated fromthe anterior and ventrolateral areas of the archenteron, intwo phases. The mesoderm is formed in a modified enterocoelousmanner. The protocoel is produced first from the anterior archentericwall and occupies the cavity of the preoral lobe; the metacoeloriginates from the ventrolateral mesodermal proliferations.The mode of formation of these cavities seems to vary with species.  相似文献   

19.
Summary In several metasomal blood vessels of Phoronis muelleri myofilament-containing podocytes are the predominant cell-type. In some regions the podocytes can build a labyrinth resembling e.g. the glomerular epithelium of Enteropneusta and the axial organ of Asteroidea.Financially supported by DFG (Sto 75/4)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号