首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Larval protonephridia appear as paired ectodermal invaginations on the posterior body end of the larva (actinotrocha), at early stages of its development. The protonephridium of the early actinotrocha has a straight canal and one group of solenocytes distally. The protonephridium of the late actinotrocha has a U-shaped canal and two (upper and lower) groups of solenocytes. After metamorphosis, solenocytes degenerate and the canal is connected with metacoel. The metanephridial funnel is formed from the upper metacoelomic wall epithelium and the lateral mesentery. The definitive nephridium consists of two parts: the ectodermal canal (derived from the protonephridial canal) and the mesodermal funnel, a derivative of the coelomic epithelium. Thus, the phoronid excretory organ is a nephromixium. Consecutive stages of the evolution of nephridia in phoronids are discussed.  相似文献   

2.
The excretory organs of Sphaerodorum flavum (Sphaerodoridae) were investigated by TEM and reconstructed from serial ultrathin sections. These organs are segmentally arranged paired protonephridia, which are in close association with a well-developed blood vascular system. Each protonephridium consists of a terminal part made up of two monociliary terminal cells (solenocytes), and a nephridioduct, formed by two cells. The two solenocytes lie close together. Each cilium is surrounded by 12 microvillar rods projecting from the perikaryon of each solenocyte. These rods form a weir-like structure in the coelomic space. The distal part of the weir is embedded in the proximal nephridioduct. The largest part of the cell bodies of the solenocytes, containing the nucleus, is lateral or basal to the weir-like structures. The lumen of the nephridioduct is formed by two multiciliated cells, which enclose the extracellular nephridial canal one behind the other. The canal opens through the nephropore beneath the cuticle without penetrating the cuticle. Both nephridioduct cells are surrounded by a blood vessel, which is partially folded into several layers. The significance of a simultaneous occurrence of protonephridial excretory organs and a well-developed blood vascular system as well as coelomic cavities is discussed. The results of this investigation indicate a close relationship of Sphaerodoridae to Phyllodocidae instead of to Syllidae within the Phyllodocida. Accepted: 27 November 2000  相似文献   

3.
Excretory and circulatory systems in Prostomatella arenicola are examined at the ultrastructural level. Interdigitating cells, which rest on a thin fibrillar basal lamina, line the lumina of the lateral vessels. A layer of muscle cells and an underlying sheath of fibrillar extracellular material surround each vessel.The excretory system consists of one pair of laterally situated branched protonephridia. Each protonephridium is composed of several terminal cells, an efferent duct and a nephridiopore. The terminal parts of the protonephridia are not restricted to the vicinity of the circulatory system; they can also be found dorsally or laterally to the nerve cords between muscle cells. The presumed filtration area arises as a hollow cylinder from the terminal cell. This cylinder is perforated by numerous clefts which are never bridged by a filter diaphragm. Instead, each terminal cell cylinder is surrounded by an extracellular matrix. The terminal cells neither extend into the lumen of the lateral vessel nor contact the vessel lining cells.Phylogenetic implications of the results are discussed.  相似文献   

4.
THE FUNCTIONAL ORGANIZATION OF FILTRATION NEPHRIDIA   总被引:4,自引:0,他引:4  
(1) Based on the classical studies of Goodrich, protonephridia are believed to be phylogenetic antecedents of metanephridia. It is argued here that the primary factor determining the type of nephridium expressed is body size rather than phylogenetic status. (2) The proposed model defines a nephridium functionally and predicts two general configurations for filtration nephridia in animals. (3) Application of the model to metanephridial and protonephridial systems indicates differences in the sites of ultrafiltration and mechanisms of pressure generation. (4) Metanephridial systems function by muscle-mediated filtration of vascular fluid into a coelomic space before modification by an excretory duct. (5) Protonephridial systems function by cilia-mediated filtration of extracellular fluid into the lumen of a protonephridial terminal cell before modification in an adjoining duct. (6) The model predicts a correlation between animals with blood vessels and metanephridia, and animals without blood vessels and protonephridia. The correlation is shown to be nearly perfect. (7) Exceptions to the model are discussed. (8) Original experimental evidence is given for the permeability of the protonephridial terminal cell to iron dextran and its reabsorption by the protonephridial duct in the polychaete, Glycera dibranchiata. (9) Experimental data for proto- and metanephridial systems are summarized and shown to support the proposed model. (10) The ultrastructure of the exceptional amphioxus ‘protonephridium’ is reviewed and original data are presented. Its organization is structurally and perhaps functionally intermediate between proto- and metanephridial systems. (11) An original ultrastructural comparison is made of monociliated nitration cells in a size range of larval invertebrates from five phyla. Filtration cells that are structurally intermediate between protonephridial solenocytes and metanephridial podocytes are noted in larvae intermediate in body size between the two extremes. The comparative data suggest that (i) podocytes and solenocytes are homologous cells and (ii) that body size is correlated with which of the two designs is expressed. (12) The fates of larval podocytes are followed through metamorphosis in three species. The results confirm the equivalence of podocytes and solenocytes as suggested by the comparative analysis. They further indicate that which morph is expressed is a function of body design factors discussed in the model. (13) Protonephridia are believed to be primitive to metanephridia because they occur in presumably primitive animals and in ontogenetic stages of many animals with metanephridia as adults. It is suggested here that the distribution of protonephridia is related to small body size and the lack of blood vessels, regardless of phylogenetic status. The occurrence of protonephridia in the larvae of species with metanephridia as adults is explained similarly as a function of the small larval size and lack of blood vessels.  相似文献   

5.
The development and microanatomy of the protonephridial system in larvae and postmetamorphic juveniles of Antalis entalis (Dentaliidae) have been examined by means of a semithin serial sectioning and reconstruction technique. One late larval stage has been additionally examined by transmission electron microscopy. The protonephridium appears during larval development and is reduced in the juvenile approximately 13 days after metamorphosis. This is the first unambiguous evidence of a protonephridium in a postlarval mollusc. When fully developed the protonephridium is unique in consisting of two cells only, a terminal cell (=cyrtocyte) and a duct-releasing cell with glandular appearance. The polyciliary terminal cell has several distinct ultrafiltration sites, resembling conditions in bivalve protonephridia. The large duct-releasing cell shows a very large nucleus probably reflecting polyploidy. Its basal infoldings and many mitochondria suggest metabolic activity, the cytoplasm is characterised by many distinct granules. The unique features of the scaphopod protonephridial system are compared with available data on the protonephridia of other molluscan classes. The finding gives additional evidence that protonephridia belong to the ground pattern of the Mollusca. Accepted: 22 January 2001  相似文献   

6.
Different developmental stages (trochophores, nectochaetae, non-mature and mature adults) of Anaitides mucosa were investigated ultrastructurally. A. mucosa has protonephridia throughout its life; during maturity a ciliated funnel is attached to these organs. The protonephridial duct cells are multiciliated, while the terminal cells are monociliated. The single cilium is surrounded by 14 microvilli which extend into the duct lumen without coming into any contact with the duct cells. Corresponding ultrastructure and development indicate that larval and adult protonephridia are identical in A. mucosa. Differences between various developmental stages can be observed only in the number of cells per protonephridium. A comparison between the funnel cells, the cells of the coelothel and the duct cells reveals that the ciliated funnel is a derivative of the duct. Due to the identical nature of the larval and postlarval protonephridia, such a funnel cannot be a secondary structure. In comparison with the mesodermally derived metanephridial funnel in phoronids it seems likely that the metanephridia of annelids and phoronids evolved convergently.  相似文献   

7.
A single pair of protonephridia is the typical larval excretory organ of molluscs. Their presence in postlarval developmental stages was discovered only recently. We found that the protonephridia of the polyplacophoran mollusc, Lepidochitona corrugata, achieve their most elaborate differentiation and become largest during the postlarval period. This study describes the protonephridia of L. corrugata using light and electron microscopy and interactive three‐dimensional visualization. We focus on the postlarval developmental period, in which the protonephridia consist of three parts: the terminal part with the ultrafiltration sites at the distal end, the voluminous protonephridial kidney, and the efferent nephroduct leading to the nephropore. The ultrafiltration sites show filtration slits between regularly arranged thin pedicles. The ciliary flame originates from both the terminal cell and the duct cells of the terminal portion. The efferent duct also shows ciliation. The most conspicuous structures, the protonephridial kidneys, are voluminous swellings composed of reabsorptive cells (“nephrocytes”). These cells exhibit strong vacuolization and an infolding system increasing the basal surface. The protonephridial kidneys, previously not reported at such a level of organization in molluscs, strikingly resemble (metanephridial) kidneys of adult molluscan excretory systems. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Phylogenese of Phoronida. Lophophorata and the Archimerata concept The main phylogenetic characteristics of Phoronida and other Lophophorates are discussed: 1. Archimeric segmentation of the body; 2. Egg cleavage of radial (or biradial) type, coeloblastula and gastrulation by invagination (emboly); 3. Mesoderm formation by a derived enteroccelous method (primitive stage of enteroc? ly); 4. Bringing of the anus anteriorly to lie rocoelous method (primitive stage of enterocoely); 4. Bringing of the anus anteriorly to lie sence of a true lophophore; 6. Larva not of trochophoral type, but actinotroch related to Tornaria-Dipleurula; 7. Nervous system basi-epithelial with primitive neurulation in Phoronopsis, without any orthogons; 8. Adult nervous ganglion neo-formed, not issuing from the apicale plate; in Phoronida this ganglion is located in the prosome and not in the mesosome; 9. Lack of cephalization. All these characteristics are closely related to that of the primitive phyla of the Chordata assemblage. The only exception is the presence of protonephridia with solenocytes in actinotroch, but such organs are also described in Cephalochordata. The Lophophorata (Phoronida, Brachiopoda, Bryozoa) are undoubtedly a primitive group on the Chordata trend and the Phoronida appear to be the most phylogenetically evolved phylum of this group with predominating position. The validity of placing the Lophophorata within the Echinoderm-Hemichordata assemblage is demonstrated. The term Archic?lomata appears not suitable and its substitution by Archimerata, assemblage at the base of the Chordata, is here proposed. The Archimerata concept brings together the Lophophorata, Echinodermata and Hemidiordata and is considered as a phylogenetic stage and a natural systematic unit.  相似文献   

9.
During spiralian development, the first pair of nephridia forms anterior to the mouth. Each organ consists of a few cells, which is characteristic for spiralian larvae. In nemerteans, one of the unambiguously spiralian taxa, so far protonephridia, has been reported only in advanced pilidium larvae, where they likely persist as juvenile and adult nephridia. These organs have not been recorded in larvae of the basally branching nemertean taxa. In search for these organs, we examined the ultrastructure of pelagic planuliform larvae of the palaeonemerteans Carinoma mutabilis and Cephalothrix (Procephalothrix) filiformis. In both species, a pair of protonephridia is located at the level of the stomodaeum. Each protonephridium of C. mutabilis consists of two terminal cells, two duct cells and one nephropore cell, while that of C. filiformis consists of three terminal cells, three duct cells and one nephropore cell. In C. mutabilis and in C. filiformis, all terminal cells contribute to forming a compound filtration structure. In both species, the protonephridia seem to develop subepidermally, since in C. filiformis, the nephropore cells pierce the larval epidermis and in C. mutabilis, the nephropores are initially covered by the binucleated multiciliated trophoblast cells. On the fifth day, these cells degenerate, so that the protonephridium becomes functional. The occurrence of protonephridia in the larvae of both paleonemertean species is in accordance with the hypothesis that a common ancestor of Nemertea and Trochozoa had a larval stage with a pair of protonephridia. This does not contradict previous hypotheses on placing the Nemertea as an ingroup of the Trochozoa or Spiralia (= Lophotrochozoa). Whether these protonephridia are restricted to the larval phase or whether they are transformed into the adult protonephridia, like those of the pilidium larva, remains to be answered.  相似文献   

10.
Summary The small hesionid polychaete Hesionides arenaria possesses paired segmental excretory organs that closely resemble solenocytic protonephridia. The nephridium consists of one terminal cell and four tubule cells which form the emission channel. From the terminal cell, up to six flagella arise each surrounded by a weir of ten regularly arranged cytoplasmic rods. The structure of the cytoplasm of three of the following cells suggests that they function in active transport and storage. Because all of the larger, more primitive species of this family are equipped with metanephridia, the possibility is discussed that these organs have been developed out of metanephridia. The Hesionides arenaria nephridium may be a morphological stage in the evolutionary pathway from metanephridia to solenocytes. This would mean that solenocytes can no longer be considered to be homologous in every case with other protonephridial organs in polychaetes and may well be derived several times independently out of metanephridia or true protonephridia.  相似文献   

11.
Volker Lammert 《Zoomorphology》1985,105(5):308-316
Summary The fine structure of the protonephridia of Haplognathia rosea (Filospermoidea) and Gnathostomula paradoxa (Bursovaginoidea) is described. Each protonephridium consists of three different cells: (1) a monociliated terminal cell which constitutes the filtration area, (2) a nonciliated canal cell showing a special protonephridial outlet system, and (3) an intraepidermal cell — the nephroporus cell — constituting the nephroporus. The protonephridia are arranged serially. There is no canal system connecting the protonephridial units.Protonephridial characters in other Bilateria are considered. The pattern of characters in the protonephridia in the last common gnathostomulid stem species and presumed apomorphies in the protonephridia of the Gnathostomulida investigated are discussed.Abbreviations used in figures ac acessory centriole - AC additional epidermal cell - bb basal body - bl basal lamina - bm bundle of microvilli - c cilium - cc cilium duct cell - cd cilium duct - cr ciliary rootlet - crs structures resembling ciliary rootlets - di diplosome - ds desmosome - dy dictyosome - f filtration area - g granules - m mitochondrium - mv microvillus - n nucleus - NC nephroporus cell - np nephroporus - oc outlet canal - TC terminal cell - tl tubules of lacunar system  相似文献   

12.
The cyclorhagid kinorhynch Echinoderes aquilonius Higgins & Kristensen, 1988 possesses a single pair of protonephridia located in segments 10 and 11. The protonephridia consist of: (1) three terminal cells T-1, T-2. T-3, each with two cilia; (2) a single non-ciliated canal cell; (3) a nephridiopore cell with many microvilli and a cuticular sieve plate. The protonephridia of Echinoderes are presumed to develop from the ectoderm near the area of the sieve plate on the eleventh segment, and are suspended in the dorso-lateral pseudocoelomic cavity where they are surrounded by a basal lamina. One of the terminal cells (T-1) secondarily penetrates the basal lamina of the tenth segment and a part of the cell attaches to the cuticle. The kinorhynch protonephridia are compared with the excretory organs of other Bilateria. expecially the ‘aschelminths’, and apomorphic characters of the kinorhynch protonephridia are defined.  相似文献   

13.
A fate map has been constructed for Phoronis vancouverensis. The animal pole of the egg gives rise to the apical plate in the hood of the actinotroch larva. The vegetal pole of the egg marks the site of gastrulation. During the initiation of gastrulation the cells of the animal pole of the embryo are directly opposite those at the vegetal pole of the embryo. The plane of the first cleavage always goes through the animal-vegetal pole of the egg. In about 70% of the cases the plane of the first cleavage is perpendicular to the future anterior-posterior axis of the actinotroch larva; in the remaining cases the plane of the first cleavage is either oblique with reference to, or occurs along, the future anterior-posterior axis of the larva. Following gastrulation catecholamine-containing cells first make their appearance in the apical plate and gut cells first produce esterase. The timing of regional specification in these embryos has been examined by isolating animal or vegetal, anterior or posterior, or lateral regions at different time periods between the initiation of cleavage and gastrulation and examining their ability to differentiate. Animal halves isolated from early cleavage through late blastula stages do not gastrulate and do not form catecholamine-containing cells. When animal halves are isolated with endoderm during gastrulation, they differentiate catecholamine-containing cells. Vegetal halves isolated at the 8- to 16-cell stage gastrulate and form normal actinotroch larvae with esterase-positive gut and catecholamine-containing apical plate cells. When this same region is isolated at blastula stages it does not gastrulate and does not differentiate these cell types. Vegetal halves isolated during gastrulation subsequently form esterase-positive gut cells, but they do not form catecholamine-containing apical plate cells. When presumptive anterior, posterior, or lateral halves are isolated from early cleavage through blastula stages, each half forms a normal actinotroch larva. Lateral halves isolated during gastrulation also form normal larvae. Anterior halves isolated during late gastrulation differentiate only the anterior end of the actinotroch larva. These isolates have a hood with catecholamine-containing apical plate cells and the first part of an esterase-positive gut but lack the anlagen of the intestine and protonephridia. Posterior halves isolated during late gastrulation differentiate only the posterior end of the actinotroch which lacks a hood with catecholamine-containing cells but has an esterase-positive gut, protonephridia, and the anlagen of the intestine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The protonephridial system of several Loricifera was studied by transmission electron microscopy. A larval specimen of Rugiloricus cf. cauliculus possesses two protonephridia, which are "capped" frontally by a compact mass of still undifferentiated gonadal cells. Each protonephridium consists of four monociliary terminal cells and four canal cells with a diplosome but no cilia. Because of incomplete series of sections and unsatisfactory fixation, the outleading cell(s) could not be detected. In a male specimen of Armorloricus elegans, each gonad contains two protonephridia that open into the gonadal lumen. Each protonephridium consists of two monociliary terminal cells, each forming a filter, two nonciliated canal cells, and two nephroporus cells. The protonephridial lumina of the latter cells fuse to one common lumen, which unites with the gonadal lumen. Preliminary observations on the protonephridia of a female Nanaloricus mysticus reveal a more complicated arrangement of interdigitating terminal and canal cells. One or two terminal cells form their own individual filter or four cells form a common compound filter. The cilium of the terminal cells of all species investigated are surrounded by a palisade of nine microvilli that support the filter barrier made of an extracellular matrix. An additional filter diaphragm could be traced between the pores in the cell wall of each terminal cell of A. elegans. The urogenital system of the Loricifera differs from that of the Priapulida in that the protonephridia of the former are completely integrated into the gonad, whereas the excretory organs of the latter open into the urogenital duct caudally of the gonads.  相似文献   

15.
Summary The protonephridial terminal organs in the nemertean Tubulanus annulatus form an integral part of the blood vessel wall. Both endothelial and muscle-cell layers of the vessel's wall are discontinued at the site of each terminal organ. The terminal organs are usually composed of from one to three terminal cells enclosing a central lumen provided with many microvilli and separated from the blood vessel's lumen by a membranous filtration area. The latter is perforated by numerous winding clefts formed by interdigitation of minute cytoplasmic pedicels arising from processes issued by each of the involved terminal cells. Ultrafiltration of blood plasma takes place across a filtration membrane which spans the cleft system and the basal lamina of the terminal cells. Fluid is propelled into the lumen of the terminal organs through the activity of ciliary bundles, one for each terminal cell involved, perhaps supplemented by vascular turgor. All efferent conduits of the protonephridium have profuse infoldings of the luminal cell surfaces and/or numerous pinocytotic pits suggestive of reabsorption of substances from the primary urine.Abbreviations BL basal lamina - C cilium - CP coated pit - CT collecting tubule - CV inzcoated vesicle - D dictyosome - E endothelial cell - F fenestration of endothelial cell - FA filtration area - FM filtration membrane - G glycogen granule - LV lateral vessel - M mitochondrion - MC muscle cell - MV microvillus - N nucleus of terminal cell - NE nucleus of endothelial cell - NP nephridiopore - PC protonephridial capillary cell - PT protonephridial tubule - R rootlet - TC terminal cell  相似文献   

16.
本研究应用透射电子显微镜研究了扩张莫尼茨绦虫原肾管的细胞学特征 ,莫尼茨绦虫原肾管的焰茎球为一个过滤器结构 ,类似于“挡河坝”样构造 ,此构造由端细胞和近管细胞外突形成的肋条 (或称杆 )相互交错排列而成。肋条之间由细胞外物质构成的“膜”结构连接 ,过滤作用通过该“膜”发生。焰细胞与近管细胞交界处有裂缝或孔与细胞外的结缔组织 (实质组织 )相通 ;原肾管的毛细排泄管细胞质索之间没有隔状联结 ;毛细排泄管及排泄管的管腔内有大量珠状微绒毛突起以增加表面积。从扩张莫尼茨绦虫及其它一些无脊椎动物原肾管的研究结果表明 ,原原肾管概念将焰细胞作为封闭的盲端已不再合适 ,需要进行修订 ,建议修订为 :原肾管是一种焰细胞系统 ,通常由焰细胞、管细胞和肾孔细胞组成 ,焰茎球作为过滤装置与周围的结缔组织 (实质组织 )有或没有裂缝 (孔 )相通  相似文献   

17.
Summary The excretory organs of Amphioxus occur as segmentally arranged structures throughout the pharyngeal region and may be divided into three components: the solenocytes, the renal tubule, and the renal glomerulus.The solenocytes possess foot processes that rest upon the coelomic surface of the ligamentum denticulatum. The tubular apparatus of the solenocytes consists of ten triangular rods surrounding a central flagellum. The distal end of the tubular apparatus enters branches of the renal tubule. The renal tubule eventually opens into the atrial cavity of Amphioxus. The renal glomerulus is a sinus within the connective tissue of the ligamentum dentieculatum where it connects elements of the branchial circulation with the dorsal aorta. The renal glomerulus, like other blood vessels of Amphioxus, lacks an endothelial lining.If Amphioxus is adapted to artificial sea water at different concentrations there is no change in kidney morphology suggesting that Amphioxus is either is osmotic with its environment or is osmoregulating with other organs.This work was supported by U.S. Public Health Service Grant 5-T01-GM 00582.  相似文献   

18.
Birger Neuhaus 《Zoomorphology》1988,108(4):245-253
Summary Pycnophyes kielensis possesses one pair of protonephridia. The single excretory organ of a female consists of 25 cells: 22 terminal cells, 2 canal cells, and 1 nephroporus cell. Generally, all cells exhibit two cilia, the only exception being the nephroporus cell, which contains a diplosome instead. The slashed peripheral cytoplasmic walls of the 22 terminal cells altogether constitute one compound filter and a common filtration area. The protonephridia discharge via cuticularized cavities and six cuticularized tubes. Two accessory cells with modified cilia penetrate the nephroporus cell. These cells are considered to be receptor cells. The protonephridium of the first juvenile stage of P. kielensis is built up of only 5 cells: 3 terminal cells, 1 canal cell, and 1 nephroporus cell. It opens to the outside via 1 cuticularized tube. The protonephridia within both the Kinorhyncha and the Bilateria are discussed. Presumably excretory organs with compound filters developed independently within Bilateria.Abbreviations bb basal body - c canal cell - ca cuticularized cavity - ci cilium - cu cuticle - d dictyosome - de desmosome - di diplosome - dl dorsal longitudinal muscle - dv dorsoventral muscle - ecm extracellular matrix - ep epidermal cell - ex excretory organ - fc filter cleft - fi filter - fm fastening muscle cell - he hemidesmosome - i intestine - if intercellular fluid - m mitochondrium - mv microvilli - n nephroporus cell - nu nucleus - r ciliary rootlet - re accessory cell (presumable receptor cell) - sj septate junction - t terminal cell - tu cuticularized tube - v vesicle - w peripheral cytoplasmic wall  相似文献   

19.
Adult specimens of Terebratulina retusa and Crania anomala have one pair of metanephridia. Each metanephridium is composed of a ciliated nephridial funnel (nephrostome) and an outleading nephridial canal, thus, these organs are open ducts connecting the metacoel of the animal with the outer medium. In both species, the inner side of a nephrostome is lined by a columnar monociliated epithelium which contacts the coelothel within one of the two ileoparietal bands. The coelothel contains basal filaments (in C. anomala these are definite myofilaments). The canal epithelium also consists of monociliated columnar cells which differ from the nephrostome epithelial cells in size and some cell components. Within the nephropore, the canal epithelium makes contact with the so-called inner mantle epithelium which lines the mantle cavity. The nephrostome epithelial cells and the canal epithelial cells never contain any contractile filaments. There are always continuous transitions between these different epithelia and distinct borders cannot be observed. The present results, especially in comparison to Phoronida, do not contradict the hypothesis of a coelothelially derived nephridial funnel and an ectodermal nephridial duct in Brachiopoda. But with regard to the differences between Phoronida and Brachiopoda (larval protonephridia and podocytes in the adults are unknown in Brachiopoda), further investigations have to be done to test the hypothesis of such heterogeneously assembled metanephridia.  相似文献   

20.
The nephridium of the dwarf male of Bonellia viridis was investigated by means of transmission electron microscopy. The nephridium proved to be of a distinct protonephridial type and not a metanephridium as maintained in the older literature. The nephridium is composed of a ciliated duct that projects into the coelom. Five crown cells at the end of the duct function as terminal filtration cells. Each crown cell has a bundle of about 20 cilia, surrounded by a labyrinthic weir of cell processes that are presumably involved in filtration. The ciliary bundles enter the nephridial duct through perforations of the adjacent tubule cells. This finding of a protonephridium in a minute, coelomate animal that lacks a circulatory system corroborates a recently formulated functional theory on the distribution of nephridial types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号