首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Unlike populations of many terrestrial species, marine populations often are not separated by obvious, permanent barriers to gene flow. When species have high dispersal potential and few barriers to gene flow, allopatric divergence is slow. Nevertheless, many marine species are of recent origin, even in taxa with high dispersal potential. To understand the relationship between genetic structure and recent species formation in high dispersal taxa, we examined population genetic structure among four species of sea urchins in the tropical Indo-West Pacific that have speciated within the past one to three million years. Despite high potential for gene flow, mtDNA sequence variation among 200 individuals of four species in the urchin genus Echinometra shows a signal of strong geographic effects. These effects include (1) substantial population heterogeneity; (2) lower genetic variation in peripheral populations; and (3) isolation by distance. These geographic patterns are especially strong across scales of 5000-10,000 km, and are weaker over scales of 2500-5000 km. As a result, strong geographic patterns would not have been readily visible except over the wide expanse of the tropical Pacific. Surface currents in the Pacific do not explain patterns of gene flow any better than do patterns of simple spatial proximity. Finally, populations of each species tend to group into large mtDNA regions with similar mtDNA haplotypes, but these regional boundaries are not concordant in different species. These results show that all four species have accumulated mtDNA differences over similar spatial and temporal scales but that the precise geographic pattern of genetic differentiation varies for each species. These geographic patterns appear much less deterministic than in other well-known coastal marine systems and may be driven by chance and historical accident.  相似文献   

2.
High‐level phylogenies are very common in evolutionary analyses, although they are often treated as incomplete data. Here, we provide statistical tools to analyze what we name “clade data,” which are the ages of clades together with their numbers of species. We develop a general approach for the statistical modeling of variation in speciation and extinction rates, including temporal variation, unknown variation, and linear and nonlinear modeling. We show how this approach can be generalized to a wide range of situations, including testing the effects of life‐history traits and environmental variables on diversification rates. We report the results of an extensive simulation study to assess the performance of some statistical tests presented here as well as of the estimators of speciation and extinction rates. These latter results suggest the possibility to estimate correctly extinction rate in the absence of fossils. An example with data on fish is presented.  相似文献   

3.
Recapture of marked juvenile and adult wood frogs in five Appalachian Mountain ponds showed adults to be 100% faithful to the ponds in which they first bred, but approximately 18% of the juveniles dispersed to breed in ponds other than the one of origin. Effective population sizes were generally smaller than the population censuses and genetic neighborhoods had an average radius of 1,126 meters. Values of standardized genetic variance based on effective population size and mating success were relatively small. Genetic population structure estimated from the dispersal data suggested that ponds within about a 1,000 meter radius should show little genetic differentiation; ponds separated by a distance greater than 1,000 meters should experience little gene flow and show higher genetic differentiation. Wood frogs in these ponds do not show a meta-population structure as suggested for newts.  相似文献   

4.
Chromosomal analysis of several cases of asymmetrical male hybrid sterility in Drosophila has implicated the X- or the Y-chromosome and one or more autosomes. Here, I develop a model for the evolution of this phenomenon. An autosomal locus is assumed to affect viability and to interact with a Y-linked or an X-linked locus to determine male fertility. In a new environment, selection for viability favors a new allele at the autosomal locus, but incompatibility of this new allele with the sex-chromosome-linked gene generates male sterility. The incompatibility can be resolved if a new allele at the sex-linked locus invades the population. This results in nonreciprocal male hybrid sterility, the direction of the nonreciprocity being determined by the dominance or recessiveness of the new autosomal gene in its effect on fertility. It is shown that stable polymorphism for the autosomal locus is possible and that, if the equilibrium frequency of the new allele is above a critical value, the population will be constantly at the verge of speciation, “waiting” for the sex-linked mutation to occur. The appearance of this mutation causes a runaway process leading to rapid fixation of the new autosomal and sex-linked alleles. If the equilibrium frequency of the new autosomal allele is less than the critical value, deterministic speciation is impossible, but random drift may increase the frequency above the critical value and predispose the population to the invasion of the new sex-linked allele. Thus, both deterministic and stochastic modes of speciation are possible. Because deterministic speciation requires large selection coefficients, which impose a severe genetic load on the population, and because stochastic speciation requires repeated population bottlenecks, it is concluded that relative to the number of successful speciation events there will be many more events of deme extinction.  相似文献   

5.
Understanding the processes that underlie biodiversity requires insight into the evolutionary history of the taxa involved. Accurate estimation of speciation, extinction, and diversification rates is a prerequisite for gaining this insight. Here, we develop a stochastic birth–death model of speciation and extinction that predicts the probability distribution of both extinct and extant numbers of species in a clade. We present two estimation methods based on this model given data on the number of extinct species (from the fossil record) and extant species (from diversity assessments): a multivariate method of moments approach and a maximum-likelihood approach. We show that, except for some special cases, the two estimation methods produce very similar estimates. This is convenient, because the usually preferred maximum-likelihood approach is much more computationally demanding, so the method of moments can serve as a proxy. Furthermore, we introduce a correction for possible bias that can arise by the mere fact that we will normally only consider extant clades. We find that in some cases the bias correction affects the estimates profoundly. Finally, we show how our model can be extended to incorporate incomplete preservation. Preservation rates can, however, not be reliably estimated on the basis of numbers of extant and extinct species alone.  相似文献   

6.
Blue whale calls in the eastern North Pacific Ocean consist of a two-part call often termed the A-B call. This call has been described for regions offshore of Oregon, Washington, and California, USA and the Sea of Cortez, Mexico (reviewed in Rivers 1997). Data collected from moored hydrophones in the eastern tropical Pacific (ETP) indicate that the A-B pattern is common in this region as well. There is consistency in this call type throughout the eastern North Pacific and throughout the year. This acoustic evidence indicates continuity between blue whales in the ETP and those found west of North America. The acoustic data suggest that the population of blue whales generally referred to as the “Californi/Mexico” stock might better be termed the “northeast Pacific” stock of blue whales.  相似文献   

7.
Abstract: The scale at which populations use the landscape influences ecological processes and management decisions. Dispersal and home-range size define the scale of landscape use for many large-mammal species. We measured dispersal and home-range size of yearling male white-tailed deer (Odocoileus virginianus) in southern Texas, and compared our results to values from the literature to understand the implications of dispersal in management of deer populations. We used radiotelemetry to monitor 22 yearling deer on 1 study site from October 1998 to October 1999, and 27 yearling deer on a second study site from October 1999 to October 2000. On the 2 study sites, 68% and 44% of yearling deer established new areas of use 4.4 ± 1.0 km and 8.2 ± 4.3 km, respectively, from the center of their autumn home range. Yearling males with spike antlers (2 points) were less likely to disperse than yearlings with fork antlers (>2 points) on 1 study site. Computer simulation showed that the scale at which deer use the landscape is large compared to property sizes in southern Texas and probably in other areas of the white-tailed deer's range. Differences in scale between land ownership patterns and landscape use by deer may result in a failure to meet management objectives and conflict among managers. High harvest rates for male deer occur in part because deer movements are large relative to property size, creating a “tragedy of the commons.” Cooperative management groups are beneficial if all landowners in an area agree on management objectives. Otherwise, deer-proof fences often are erected to reduce conflicts among property owners.  相似文献   

8.
Abstract.— The causes of speciation in the sea are rarely obvious, because geographical barriers are not conspicuous and dispersal abilities or marine organisms, particularly those of species with planktonic larvae, are hard to determine. The phylogenetic relations of species in cosmopolitan genera can provide information on the likely mode of their formation. We reconstructed the phylogeny of the pantropical and subtropical sea urchin genus Diadema, using sequences of mitochondrial DNA from 482 individuals collected around the world, to determine the efficacy of barriers to gene flow and to ascertain the history of possible dispersal and vicariance events that led to speciation. We also compared 22 isozyme loci between all described species except D. palmeri. The mitochondrial DNA data show that the two deepest lineages are found in the Indian and West Pacific Oceans. (Indo‐Pacific) Diadema setosum diverged first from all other extant Diadema, probably during the initiation of wide fluctuations in global sea levels in the Miocene. The D. setosum clade then split 3‐5 million years ago into two clades, one found around the Arabian Peninsula and the other in the Indo‐West Pacific. On the lineage leading to the other species of Diadema, the deepest branch is composed of D. palmeri, apparently separated when the climate of New Zealand became colder and other tropical echinoids at these islands went extinct. The next lineage to separate is composed of a currently unrecognized species of Diadema that is found at Japan and the Marshall Islands. Diadema mexicanum in the eastern Pacific separated next, whereas D. paucispinum, D. savignyi, and D. antillarum from the western and central Atlantic, and (as a separate clade) D. antillarum from the eastern Atlantic form a shallow polytomy. Apparently, Indo‐Pacific populations of Diadema maintained genetic contact with Atlantic ones around the southern tip of Africa for some time after the Isthmus of Panama was complete. Diadema paucispinum contains two lineages: D. paucispinum sensu stricto is not limited to Hawaii as previously thought, but extends to Easter Island, Pitcairn, and Okinawa; A second mitochondrial clade of D. paucispinum extends from East Africa and Arabia to the Philippines and New Guinea. A more recent separation between West Indian Ocean and West Pacific populations was detected in D. setosum. Presumably, these genetic discontinuities are the result of water flow restrictions in the straits between northern Australia and Southeast Asia during Pleistocene episodes of low sea level. Diadema savignyi is characterized by high rates of gene flow from Kiribati in the central Pacific all the way to the East African Coast. In the Atlantic, there is a biogeographic barrier between the Caribbean and Brazil, possibly caused by fresh water outflow from the Amazon and the Orinoco Rivers. Diadema antillarum populations of the central Atlantic islands of Ascension and St. Helena are genetically isolated and phylogenetically derived from Brazil. Except for its genetic separation by the mid‐Atlantic barrier, Diadema seems to have maintained connections through potential barriers to dispersal (including the Isthmus of Panama) more recently than did Eucidaris or Echinometra, two other genera of sea urchins in which phylogeography has been studied. Nevertheless, the mtDNA phylogeography of Diadema includes all stages expected from models of allopatric differentiation. There are anciently separated clades that now overlap in their geographic distribution, clades isolated in the periphery of the genus range that have remained in the periphery, clades that may have been isolated in the periphery but have since spread towards the center, closely related clades on either side of an existing barrier, and closely related monophyletic entities on either side of an historical barrier that have crossed the former barrier line, but have not attained genetic equilibrium. Except for D. paucispinum and D. savignyi, in which known hybridization may have lodged mtDNA from one species into the genome of the other, closely related clades are always allopatric, and only distantly related ones overlap geographically. Thus, the phylogenetic history and distribution of extant species of Diadema is by and large consistent with allopatric speciation.  相似文献   

9.
The hybrid zone between the Red- and Yellow-shafted Flickers has been stable on the United States Great Plains in historical times. This conclusion is based on multivariate comparisons of historical and contemporary collections from 18 locales. Adaptive speciation theory predicts that the hybrid zone should either become broader or narrower as a result of introgressive hybridization or reinforcement of premating isolating mechanisms. Neither of these predictions was borne out. Despite 10,000-13,000 years of hybridization, mating between subspecies remains indiscriminate. The data are also inconsistent with a dynamicequilibrium hypothesis wherein narrow hybrid zones are maintained by hybrid unfitness. According to this hypothesis, the hybrid zone would probably “flow” unless it was trapped by a population density trough. The hybrid zone does not appear to be associated with such a feature. The data are consistent with a bounded hybrid superiority theory of a hybrid zone, but this is more a question of survival in a process of elimination than a resounding corroboration.  相似文献   

10.
The concept of Müllerian mimicry suggests convergent evolution to an intermediate pattern and does not predict polymorphism in mimicry rings. We examined the evolution of mimicry patterns and the order of divergence of various factors, including the role of aposematic patterns in speciation, in a clade of net-winged beetles with a robust phylogeny that suggests that they dispersed from the Australian to Asian plate. We found strong evidence for the evolution of mimicry via advergence in Metriorrhynchus because older patterns are represented in the Oriental region within more than 100 species of lycids from several lineages. Advergence was likely the cause of the observed intraspecific polymorphism in contrast to the predicted universal monomorphism. Polymorphism was found in populations of two species in Sumatra and Borneo and in populations fine-tuned to subtle variants in various habitats. The advergence is likely to be based on the small population sizes of immigrants. The differences in population sizes result in much higher benefits for dispersing species than native populations. Speciation was trigged by the divergence in aposematic coloration, and the genetic differences accumulated slowly during incomplete isolation. We assumed that the differentiation in genitalia through sexual selection ultimately reinforced speciation initiated by the shift between mimicry patterns.  相似文献   

11.
One tool in the study of the forces that determine species diversity is the null, or simple, model. The fit of predictions to observations, good or bad, leads to a useful paradigm or to knowledge of forces not accounted for, respectively. It is shown how simple models of speciation and extinction lead directly to predictions of the structure of phylogenetic trees. These predictions include both essential attributes of phylogenetic trees: lengths, in the form of internode distances; and topology, in the form of internode links. These models also lead directly to statistical tests which can be used to compare predictions with phylogenetic trees that are estimated from data. Two different models and eight data sets are considered. A model without species extinction consistently yielded predictions closer to observations than did a model that included extinction. It is proposed that it may be useful to think of the diversification of recently formed monophyletic groups as a random speciation process without extinction.  相似文献   

12.
Flower, fruit and immature seed abortion was studied in seven self-incompatible species of trees in a tropical lowland semideciduous forest. The species showed considerable variability in fruit and seed set and the rate at which flowers and fruits were aborted. The amount of flower and fruit abortion also varied over time within species. Small samples of open-pollinated flowers in three species showed adequate amounts of pollen on the stigma, but it could not be determined whether the pollen was compatible or incompatible. In a species with multiseeded fruits, the aborted fruits contained significantly fewer seeds than those retained on the plant. Position of fruit within the inflorescence and of seed within the ovary also had a marked effect on abortion: fruits and seeds at certain positions had a higher probability of abortion than those at other positions. Experiments to test the effect of pollen source on abortion were inconclusive. The factors underlying abortions were evaluated in the context of three mutually non-exclusive hypotheses. It is concluded that selection for increased pollen dispersal and uncertainty in paternity of the zygotes are major factors underlying abortions.  相似文献   

13.
Historical flood records for the Rio Grande Valley of New Mexico suggest that a pocket gopher (Thomomys bottae) hybrid zone previously thought to be 10,000 years old may actually be closer to 50 years old. Measured zone width (defined genetically) is consistent with the hypothesis of recent contact, if we assume a reasonable dispersal distance of approximately 400 m/year for pocket gophers. A five-year study of movement of the contact zone between the two species of chewing lice that parasitize these pocket gophers also is consistent with the hypothesis of recent origin of the zone.  相似文献   

14.
Natural and anthropogenic‐induced fluctuations in temperature can have profound effects on an organism's reproduction. The potential of herbarium collections for detecting changes in the timing of reproduction associated with interannual fluctuations in temperature from 1905 to 2003 was assessed in several taxa in the Fucus distichus (L.) emend. Powell complex from northern New England. Data were also used to evaluate whether air and/or sea temperature and North Atlantic Oscillation indices can cause overlap in the reproductive seasonalities of these taxa, a potential mechanism that prevents speciation. For all taxa, there was much variability in reproductive seasonalities among years. Discerning potential correlations with air or sea temperature was difficult because of a suspected bias to collect reproductive specimens at times when most of the population was nonreproductive. Nevertheless, there was a trend for seawater temperature to explain aseasonal reproduction for some taxa. Moreover, the existing archive (1895–2003) shows that the reproductive seasons of these taxa often overlap, and we suggest that interannual variability in temperature may often inhibit speciation. Suggestions also include archive of both reproductive and vegetative materials as well as coordinated sampling in critical biogeographic regions. No one investigator or institution can accomplish this, but phycological societies could organize and sustain such efforts.  相似文献   

15.
16.
The genetic and phenotypic structure of sympatric populations of wild bacteria traditionally identified as Bacillus subtilis and B. licheniformis was analyzed. Small soil samples were taken from a single, tiny site in the Sonoran Desert of Arizona, USA, to provide a true population analysis, in contrast to many analyses of genetic structure using bacterial strain collections of widely heterogeneous origin. Genetic analyses of isolates used multilocus enzyme electrophoresis, mismatches in restriction fragment length polymorphism, and variants from Southern hybridization with B. subtilis DNA probes. Phenotypic analyses of isolates used the API test system for detection of growth and acid production on specific carbon sources. The two species were distinct both phenotypically and genetically, despite their known potential for genetic exchange in laboratory experiments. Genic and genotypic diversity were high in both species, and only 16% of observed allozyme variants might possibly be common to both species. Hence, there is probably modest genetic exchange, if any, between the species in nature. Clear hierarchies of population-genetic structure were found for both species. Different types of genetic data yield concordant population structures for B. subtilis. For both species, two-locus and multilocus statistical analyses of linkage demonstrated modest to strong disequilibrium at the species level but truly panmictic subunits within each species. The evidence for extensive genetic recombination within these fine-scale subdivisions is unequivocal, indicating that the sexuality of these bacteria can be well expressed in nature. The relation of these results to processes of bacterial evolution and speciation is discussed.  相似文献   

17.
18.
Cichlid fishes in African rift lakes have undergone rapid speciation, resulting in “species flocks” with more than 300 endemic species in some of the lakes. Most researchers assume that there is little phenotypic variation in cichlid fishes. I report here extensive phenotypic plasticity in a Neotropical cichlid species. I examined the influence of diet on trophic morphology during ontogeny in Cichlasoma managuense. Two groups of full siblings were fed two different diets for eight months after the onset of feeding; thereafter both groups were fed a common diet. Phenotypes that differed significantly at 8.5 months converged almost completely at 16.5 months. If feeding on two different diets is continued after 8.5 months, the phenotypes remain distinct. Differences in diet and possibly in feeding mode are believed to have caused these phenotypic changes. Phenotypic plasticity is described in terms of a qualitative model of heterochrony in which phenotypic change in morphology is explained as retardation of the normal developmental rate. If phenotypic expression of morphology is equally plastic in African cichlid species as it may be in the American cichlids, as exemplified by C. managuense, then taxonomic, ecological, and evolutionary analyses of “species flocks” may be in need of revision. However, Old World cichlids may be less phenotypically plastic than New World cichlids, and this may contribute to the observed differences in speciation rate and degree of endemism.  相似文献   

19.
We studied the inheritance of survival ability in host-associated populations of the tephritid fly, Eurosta solidaginis, to test predictions of sympatric speciation models. Eurosta solidaginis induces galls on two species of goldenrod, Solidago altissima and S. gigantea. The host-associated populations have been hypothesized to be host races that originated in sympatry (Craig et al. 1993). We found evidence for disruptive selection for host use, which is a critical assumption of sympatric speciation models. Each host race had higher survival rates on their host plant than on the alternative host. F1 and backcross hybrids also had lower survival rates than the pure host-race flies on their host plant. Since assortative mating occurs due to host-plant preference (Craig et al. 1993) this would select for divergence in host preference. Low hybrid survival could have been due to strong genetic incompatibilities of the populations or due to host adaptation by each population. Strong genetic incompatibilities would result in poor survival on all host plants, while host adaptation could result in low overall survival with high hybrid survival on some host plants with particularly “benign” environments. High survival of F1, F2, and backcross hybrids on some plant genotypes in some years supported the host adaptation hypothesis. F1 flies mated and oviposited normally and produced viable F2 and backcross hybrids indicating gene flow is possible between the host races. A few flies developed and emerged on the alternative host plant. This demonstrates that genes necessary to utilize the alternative host exist in both host races. This could have facilitated the origin of one of the populations via a host shift from the ancestral host. The inheritance of survival ability appears to be an autosomal trait. We did not find evidence that survival ability was maternally influenced or sex linked.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号