首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Taxonomic studies of an extensive collection of flattened members of the Solieriaceae considered by many authors to be species of Agardhiella, Eucheuma, Meristotheca, and Meristiella lead us to conclude that they represent only two genera in Brazil: Agardhiella, including A. ramosissima (Harvey) Kylin and A. floridana (Kylin) Gabrielson ex Guimarães et Oliveira, and Meristiella, with only one species, M. gelidium (J. Agardh) Cheney et Gabrielson. Accordingly, we propose that 1) Meristotheca gigartinoides Joly et Ugadim be synonymized with Agardhiella floridana, and 2) Meristiella echinocarpa (Areschoug) Cheney et Gabrielson and M. schrammii (P. et H. Crouan) Cheney et Gabrielson be synonymized with Meristiella gelidium.  相似文献   

2.
Olpidiopsis sp. (Oomycota) was cultured with its original host Bostrychia moritziana (Sonder ex Kützing) J. Agardh from Madagascar. Bean‐shaped zoospores with two heterokont flagella attached to the host cell wall surface and in 2 days host cells began collapsing and one or more syncytia developed in each infected cell. Zoospores were cleaved and an exit tube with a small plug was formed. Complete development and zoospore discharge occurred in 3 days. Infection occurred in cells of polysiphonous branches, monosiphonous branches, rhizoids and reproductive stichidia. Dead cells of plants treated with microwave were not infected. Susceptibility was variable in other Bostrychia species from different countries. Bostrychia moritziana (Sonder ex Kützing) J. Agardh, and Bostrychia radicans (Montagne) Montagne from Madagascar were susceptible but one Bostrychia tenella (J. V. Lamouroux) J. Agardh isolate from Madagascar was susceptible and two were not. B. radicosa (Itono) J. A. West, G. C. Zuccarello et M. Hommersand isolates from Madagascar, Thailand, Australia and New Caledonia were susceptible but an isolate from Malaysia was not. B. radicans isolates from Mexico and Brazil were non‐susceptible as were Bostrychia flagellifera Post, Bostrychia harveyi Montagne, Bostrychia montagnei Harvey, Bostrychia simpliciuscula Harvey ex J. Agardh, Bostrychia tenuissima R. J. King et Puttock, Stictosiphonia intricata(Bory de Saint‐Vincent) P. C. Silva, Stictosiphonia kelanensis (Grunow) R. J. King et Puttock and Stictosiphonia tangatensis (Post) R. J. King et Puttock, Lophosiphonia sp., Neosiphonia sp. and Polysiphonia spp. isolates were also non‐susceptible. Many non‐susceptible strains showed initial cell‐collapse followed by rapid wound‐repair cell formation without syncytia or sporangia developing. Caloglossa leprieurii (Montagne) G. Martens from Madagascar showed cell‐collapse and wound‐repair in periaxial cells, but wing cells died and became purple without wound‐repair. Caloglossa ogasawaraensis Okamura and Caloglossa postiae M. Kamiya et R. J. King had no symptoms of infection. Dasysiphonia chejuensis I. K. Lee et J. A. West was not infected. Surprisingly, the conchocelis phase but not the blade phase of Porphyra pulchella J. A.West, G. C. Zuccarello and Porphyra suborbiculata Kjellman was infected. The conchocelis of Porphyra tenera Kjellman and Porphyra linearis Greville were infected but no blade stages were tested. Porphyra miniata (C. Agardh) C. Agardh and Porphyra dentata Kjellman conchocelis were not infected. Bangia atropurpurea (Roth) C. Agardh gametophyte filaments were not infected. Other red, brown and green algae were not infected. Time lapse videomicroscopy of development and spore release was done.  相似文献   

3.
Due to the geographical location and paleobiogeography of the Canary Islands, the seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These areBryopsidella neglecta (Berthold) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck,Hincksia onslowensis (Amsler et Kapraun) P. C. Silva,Syringoderma floridana Henry,Peyssonnelia harveyana J. Agardh,Cryptonemia seminervis (C. Agardh) J. Agardh,Botryocladia wynnei Ballantine,Gloiocladia blomquistii (Searles) R. E. Norris,Halichrysis peltata (W. R. Taylor) P. Huvé et H. Huvé,Leptofauchea brasiliensis Joly, andSarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae, support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions.  相似文献   

4.
Ten species of Sargassum (Sargassaceae, Phaeophyceae) were found along the Gulf of Thailand. Morphological characteristics of Sargassum baccularia (Mertens) C.A. Agardh, S. binderi Sonder, S. cinereum J.G. Agardh, S.crassifolium J.G. Agardh, S. longifructum Tseng et Lu, S. oligocystum Montagne, S. polycystum C.A. Agardh, S. siliquosum J.G. Agardh, S. swartzii (Turner) C.A. Agardh and one unidentified species were examined and are described in detail. The most common species were S. polycystum distributed widely in almost all the study sites, S. crassifolium restricted to Prachuap Khirikhan Province, S. longifructum restricted to Chumphon Province, S. siliquosum restricted to Surat Thani Province and one unidentified species restricted to Songkhla Province. Three species (S. cinereum, S. longifructum and S. swartzii) are new records for the algal flora of Thailand. Five species (S. baccularia, S. cinereum, S. longifructum, S. polycystum and the unidentified species) belong to the section Zygocarpicae (J.G. Agardh) Setchell.  相似文献   

5.
The nucleotide sequence data of molecular markers 18S rRNA, RUBISCO spacer, and cox2‐3 intergenic spacer were integrated to infer the phylogeny of Gracilaria species, collected from the western coast of India, reducing the possibility of misidentification and providing greater phylogenetic resolution. A phylogenetic tree was constructed using cox2‐3 and RUBISCO spacer sequences, exhibiting the same clustering but differing slightly from that of the rRNA‐based phylogenetic tree. The phylogeny inferred from the combined data set confers an analogous pattern of clustering, compared with those of trees constructed from individual data sets. The combined data set resulted in a phylogeny with better resolution, which supported the clade with higher consistency index, retention index, and bootstrap values. It was observed that Gracilaria foliifera (Forssk.) Børgesen is closer to G. corticata (J. Agardh) J. Agardh varieties, while G. salicornia (C. Agardh) E. Y. Dawson and G. fergusonii J. Agardh both originated from the same clade. The position of G. textorii (Suringar) De Toni faltered and toppled between G. salicornia and G. dura (C. Agardh) J. Agardh; however, G. gracilis (Stackh.) M. Steentoft, L. M. Irvine et W. F. Farnham was evidently distant from the rest of the species.  相似文献   

6.
A phylogenetic study was conducted of species of Halymeniaceae from New Zealand presently placed in Aeodes or Pachymenia, based on maximum‐likelihood (ML), maximum‐parsimony (MP), and Bayesian analyses of rbcL and nuclear internal transcribed spacer (ITS) rDNA sequences. We used molecular and morphological data in combination with exhaustive sampling of herbarium collections to clarify the taxonomy and distributions of New Zealand members of Pachymenia and Aeodes. Our study confirms the presence of three erect species of Pachymenia on the New Zealand mainland, and we resurrect the name Pachymenia dichotoma J. Agardh for the widely distributed, southernmost species. Species of Aeodes from South Africa are shown to be closely related to Pachymenia carnosa (J. Agardh) J. Agardh, the type species of Pachymenia, and are accordingly transferred to Pachymenia.  相似文献   

7.
Based on personal collections ofGlobba unifolia Ridl. andG. unifolia var.sessiliflora Holtt., the latter is recognized as a distinct species. As the nameG. sessiliflora is already occupied, the nomen novumG. corneri is proposed in honour of Prof. DrE. J. H. Corner, who was the first collector of the plant.Dedicated to Prof. DrE. J. H. Corner (Cambridge) on the occasion of his 85th birthday on January 12th, 1991.  相似文献   

8.
Species discrimination within the gigartinalean red algal genus Hypnea has been controversial. To help resolve the controversy and explore phylogeny within the genus, we determined rbcL sequences from 30 specimens of 23 species within the genus, cox1 from 22 specimens of 10 species, and psaA from 16 species. We describe H. caespitosa as a new species characterized by a relatively slender main axis; a pulvinate growth habit with entangled, anastomosing, and subulate uppermost branches; and unilaterally borne tetrasporangial sori. The new species occurs in the warm waters of Malaysia, the Philippines, and Singapore. The phylogenetic trees of rbcL, psaA, and cox1 sequences showed a distant relationship of H. caespitosa to H. pannosa J. Agardh from Baja California and the marked differentiation from other similar species. The rbcL + psaA tree supported monophyly of the genus with high bootstrap values and posterior probabilities. The analysis revealed three clades within the genus, corresponding to three sections, namely, Virgatae, Spinuligerae, and Pulvinatae first recognized by J. G. Agardh. Exceptions were H. japonica T. Tanaka in Pulvinatae and H. spinella (C. Agardh) Kütz. in Spinuligerae.  相似文献   

9.
An examination of a series of collections from the coast of Natal, South Africa, has revealed the presence of two species of Martensia C. Hering nom. cons: M. elegans C. Hering 1841, the type species, and an undescribed species, M. natalensis sp. nov. The two are similar in gross morphology, with both having the network arranged in a single band, and with reproductive thalli of M. elegans usually larger and more robust than those of M. natalensis. Molecular studies based on rbcL sequence analyses place the two in separate, strongly supported clades. The first assemblage occurs primarily in the Indo‐West Pacific Ocean, and the second is widely distributed in tropical and warm‐temperate waters. Criteria that have been used in the past for separating the two, namely, the number and shape of the blades, the presence of a single‐ versus a multiple‐banded network, and blade margins entire or toothed, were determined to be unreliable. Although the examination of additional species is required, the morphology and position of procarps and cystocarps, whether at or near the corners of the longitudinal lamellae and the cross‐connecting strands or along the lobed, membranous edges of the longitudinal lamellae or on the thallus margins, may prove to be diagnostic at the subgenus level. We recognize subg. Martensia, including the type of Martensia: M. elegans and subg. Mesotrema (J. Agardh) De Toni based on Martensia pavonia (J. Agardh) J. Agardh.  相似文献   

10.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

11.
Branch cultures ofEucheuma alvarezii Doty var.tambalang Doty, farmed in the Philippines, andE. isiforme (C. Agardh) J. Agardh var.denudatum Cheney, from the west coast of Florida, were gradually transferred through three temperature regimes over a 6-week period. Photosynthetic responses were measured under a series of irradiances (P-I curves) and temperatures to determine immediate responses of the plants before, during and after completion of the transfers. The Philippine variety did not show acclimation to 18 °C either after gradual transfer from the initial culture temperature of 25 °C or when abruptly transferred from 25 to 18 °C. The Florida variety did show acclimation to 25 °C when gradually transferred from 18 to 22 to 25 °C over the 6-week period, but not if abruptly transferred from 18 to 25 °C. The west coast variety ofE. isiforme from Florida shows a temperature acclimation ability that parallels the seasonal changes in water temperature of its habitat.  相似文献   

12.
Eucheuma isiforme (C. Agardh) J. Agardh exhibits a combination of vegetative and reproductive features that distinguish it from other critically studied genera in the Solieriaceae. The development of the multiaxial thallus, emphasizing the arrangement of periaxial cells around each axial file; presence of reproductive nemathecia that contain carpogonial branches and auxiliary cells; and post-diploidization stages, including gonimoblast and pericarp initiation, stages of fusion cell formation, and carposporophyte development are described and illustrated for the first time in this species. The vegetative and reproductive features observed in E. isiforme are not diagnostic of any of the recently erected tribes in the Solieriaceae. Eucheuma appears most closely related to the Indian Ocean genus, Sarconema.  相似文献   

13.
A critical reassessment of the morphological features of two closely related red algal genera, Grateloupia C. Agardh and Prionitis J. Agardh (Halymeniaceae), shows that members of the two genera share very similar reproductive (including the Grateloupia‐type auxiliary‐cell ampullae) and vegetative characters. Diagnostic features hitherto used for distinguishing these two genera, the texture of blades (lubricous to leathery in Grateloupia vs cartilaginous in Prionitis) and the position of reproductive structures (scattered over the entire blade in Grateloupia vs confined to particular portions of the blade in Prionitis), are continuous across some 75 species of both genera, thus making it difficult to draw a clear‐cut distinction between the two genera. In ribulose‐1,5‐bisphosphate carboxylase/oxygenase gene (rbcL) sequence analyses, the species of Grateloupia and Prionitis, including the two generitypes, constitute a large monophyletic clade in the Halymeniaceae. It is therefore proposed that Prionitis be included in the synonymy under Grateloupia and the appropriate combinations are proposed.  相似文献   

14.
The calcified, though strongly mucosoid gametophytes of Trichogloea (Nemaliales, Liagoraceae) usually appear seasonally for a short period in tropical and subtropical regions. Vegetative and reproductive characteristics of the presently recognized species, Trichogloea requienii (Mont.) Kützing (the generitype), Trichogloea lubrica J. Agardh, and Trichogloea herveyi W. R. Taylor, are described and compared. In addition, the identities of two previously synonymized species, Trichogloea jadinii Børgesen and Trichogloea javensis B0rgesen are clarified. Species of the genus display considerable variation in habit and branching patterns, necessitating an assessment of reproductive structures for accurate identification. Reliable features of Trichogloea include the structure of the medulla and the cortical (assimilatory) filaments, location and structure of carpogonial branches and spermatangia, and the nature of sterile filaments in the vicinity of the cystocarp. Secondary features include both external and internal branching pattern, and the proportion of calcium carbonate to lubricous material, the latter having to be assessed from fresh collections. The present study provides a comparative morphological account of the species of Trichogloea. As a result, T. requienii, T. lubrica, T. herveyi are confirmed as independent species; T. jadinii is removed from synonymy with T. lubrica and placed in that of T. requienii, and T. javensis is confirmed as a synonym of Izziella orientalis (J. Agardh) Huisman et Schils.  相似文献   

15.
A new species, Sargassum boreale Yoshida et Horiguchi is described. It belongs to the subgenus Bactrophycus section Teretia, with cylindrical receptacles and is distinct from Sargassum confusum C. Agardh, S. pallidum (Turner) C. Agardh and Sargassum microceratium (Turner) C. Agardh in having a rather elongated stem with smooth surface and distantly issuing main branches, with narrow leaves. The distinction between S. boreale and these species is also revealed by a difference in internal transcribed spacer 2 (ITS‐2) sequences. In addition to the base substitutions, the existence of a large gap in S. boreale distinguishes this species from others. Sargassum boreale is distributed around Hokkaido and Saghalien to 50°N latitude. A key to the species of section Teretia is provided.  相似文献   

16.
In a taxonomic/phylogenetic study of the genus Lenormandia, several species were found to differ significantly from the type species, L. spectabilis Sonder, in apical morphology, blade‐surface pattern, medullary construction, the presence of pseudopericentral cells, and the position of reproductive structures. These species constitute two groups that differ morphologically, a finding largely supported by analysis of 18S rRNA sequences, as reported previously. The two putative Lenormandia species from New Zealand, along with two previously undescribed species also from New Zealand, comprised one such group, designated here by the new genus name Adamsiella L.E. Phillips et W.A. Nelson, gen. nov. and including A. melchiori L.E. Phillips et W.A. Nelson, sp. nov., A. lorata L.E. Phillips et W.A. Nelson, sp. nov., A. angustifolia (Harvey) L.E. Phillips et W.A. Nelson, comb. nov., and A. chauvinii (Harvey) L.E. Phillips et W.A. Nelson comb. nov. Adamsiella differs from Lenormandia by incurved apices, a chevron surface pattern, and reproductive structures on dorsi‐ventrally flattened apically incurved polysiphonous branchlets usually produced at the margins. Two species endemic to Australia formed the second group designated by the resurrected generic name Epiglossum and also characterized by a strongly incurved apex and chevron surface pattern but with reproductive structures produced on terete polysiphonous branchlets found either on the midrib or elsewhere on the blade surface but not the margins. Epiglossum contains E. smithiae (J.D. Hooker et Harvey) Kützing and E. proliferum (C. Agardh) L.E. Phillips, comb. nov.  相似文献   

17.
Numerous attempts to capture the morphological variability of the genus Caulerpa have resulted in an unstable classification of numerous varieties and formae. In the present study we attempted to test taxon boundaries by investigating morphological and genetic variation within and between seven taxa of Caulerpa, supposedly belonging to four species, sampled at different sites in a Philippine reef system. Using both field and culture observations, we described the relation between the variability of a set of morphological characters and ecological parameters, such as wave exposure, light intensity, and substrate type. Statistical analyses showed that the limits between two (out of three) ecads of the C. racemosa (Forsskål) J. Agardh complex were obscured by the presence of morphological plasticity. Other studied taxa of Caulerpa (i.e. C. cupressoides [Vahl] C. Agardh, C. serrulata [Forsskål] J. Agardh, and two formae of C. sertularioides [S. Gmelin] Howe) could be grouped based on morphology despite the presence of morphological plasticity. Our results indicated a strong association between light intensity and several quantitative morphological variables. Genetic diversity of these taxa was assessed by partial sequencing chloroplast rbcL and tufA genes and the ycf10‐chlB chloroplast spacer. In all phylogenetic analyses, C. serrulata, C. cupressoides, C. sertularioides, and the three ecads of C. racemosa emerged as distinct genetic units. Despite the presence of morphological plasticity and morphological convergence, a subset of morphological characters traditionally used in taxonomic delimitation still had sufficient discriminative power to recognize the terminal phylogenetic clades.  相似文献   

18.
The results of genome analysis of five hybrids, viz.Elymus patagonicus ×Hordeum procerum, E. patagonicus ×H. tetraploidum, E. angulatus ×H. jubatum, E. angulatus ×H. lechleri, andE. angulatus ×H. parodii, are reported. The genomic constitution ofHordeum tetraploidum andH. jubatum is best given as H1H1H2H2, ofH. lechleri andH. parodii as H1H1H2H2H4H4, ofH. procerum as H1H1H2H2H3H3, and ofElymus patagonicus andE. angulatus as SSH1H1H2H2.  相似文献   

19.
Intergeneric crosses were made between representatives of the genomically-defined generaElymus, Agropyron, Elytrigia, Pseudoroegneria, andThinopyrum. The genomic constitution ofElytrigia repens, the type species ofElytrigia, is shown to be SSH, a genomic combination otherwise found only inElymus. The S genome ofPseudoroegneria has almost always a dominant influence on the morphology of the taxa of which it is a component.Wang (1989) showed that the J genome inThinopyrum and the S genome have considerable homoeology, with a mean c-value of 0.35 in diploid SJ hybrids. A genetic coherence from S to SJe, Je, JeJb, and Jb can be expected, agreeing with the continuous morphologic variation pattern observed. Because of the absence of morphological discontinuities between the taxa,Pseudoroegneria (S),Elymus (SH, SY, sometimes with additional genomes),Elytrigia (SSH, SSHX), andThinopyrum (SJ, SJJ, J) are best treated as a single genus,Elymus, following the generic concept ofMelderis in Flora Europaea and Flora of Turkey. The basic genomic constituents ofElymus will then be the S and/or J genomes.Agropyron, with diploids, tetraploids, and hexaploids based on the P genome is morphologically distinct from other genera inTriticeae. In a few species ofElymus andPseudoroegneria, a P genome is an additional constituent. In these cases the P genome has a negligible morphological influence. Therefore, it seems reasonable to maintainAgropyron as a separate genus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号