首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of genetic variability at 12 microsatellite loci and 19 single nucleotide polymorphisms in mitochondrial DNA were studied in four farm strains and four wild populations of Atlantic salmon. Within populations, the farm strains showed significantly lower allelic richness and expected heterozygosity than wild populations at the 12 microsatellite loci, but a significantly higher genetic variability with respect to observed number of haplotypes and haplotype diversity in mtDNA. Significant differences in allele- and haplotype-frequencies were observed between farm strains and wild populations, as well as between different farm strains and between different wild populations. The large genetic differentiation at mitochondrial DNA between wild populations (FST = 0.24), suggests that the farm strains attained a high mitochondrial genetic variability when created from different wild populations seven generations ago. A large proportion of this variability remains despite an expected lower effective population size for mitochondrial than nuclear DNA. This is best explained by the particular mating schemes in the breeding programmes, with 2–4 females per male. Our observations suggest that for some genetic polymorphisms farm populations might currently hold equal or higher genetic variability than wild populations, but lower overall genetic variability. In the short-term, genetic interactions between escaped farm salmon and wild salmon might increase genetic variability in wild populations, for some, but not most, genetic polymorphisms. In the long term, further losses of genetic variability in farm populations are expected for all genetic polymorphisms, and genetic variability in wild populations will be reduced if escapes of farm salmon continue.  相似文献   

2.
Sex-biased behaviours are expected to play an important role in partitioning genetic variance in animal populations. Comparing genetic structure at markers with different modes of inheritance provides a means of detecting these behaviours and their consequences for population genetic structure. In colonially breeding mammals, the common combination of female philopatry and male vagility can promote contrasting patterns of genetic differentiation between the sexes, both via their effects on recurrent gene flow and on colonization. We examined sex differences in gene flow and structure by comparing maternally inherited mitochondrial DNA (mtDNA) and biparentally inherited autosomal loci in the Formosan lesser horseshoe bat Rhinolophus monoceros . We found that genetic partitioning was higher at mtDNA than autosomal markers in both sexes, indicative of female-biased philopatry and male-biased dispersal. Across Taiwan, isolation-by-distance was detected for all sex/marker combinations but was steeper for mtDNA than for nuclear markers. We suggest that isolation-by-distance shown from mtDNA at large scales is likely to reflect the stepwise founding of new breeding colonies by females during colonization. In contrast, no isolation-by-distance was found at smaller distances of up to 100 km, indicating that gene flow and/or recent shared ancestry homogenises genetic structure among nearby sites. Our results highlight the value of an indirect genetic approach to understanding sex-biased behaviours and their consequences in a little-studied species.  相似文献   

3.
The Eurasian black vulture (Aegypius monachus) has experienced a severe decline during the last two centuries and is globally classified as near‐threatened. This has led to the extinction of many traditional breeding areas in Europe and resulted in the present patchy distribution (Iberian and Balkan peninsulas) in the Western Palearctic. In the present study, we describe the current genetic status of the European populations using both mitochondrial cytochrome b sequences and nuclear microsatellite markers, comparing with those found in Asia (Mongolia and Caucasus region). Although, mitochondrial (mt)DNA revealed a relatively low genetic variability (haplotype diversity), no evidence of genome‐wide genetic erosion exists because nuclear diversity exhibits normal levels and strong differentiation. A highly philopatric dispersal behaviour must be invoked to explain the existence of a clear pattern that revealed by the phylogeographic analysis, which indicates a sharp East–West clinal distribution and an allopatric differentiation. The distribution of mtDNA haplotypes one in the Iberian population and two in Balkan population and the significance divergence at nuclear loci fulfill the definitions of those populations as evolutionary significant units. We discuss how management strategies should aim at the maintenance (or increase) of current genetic variability levels, suggesting that independent conservation plans are urgently required to protect these two breeding European populations from extinction. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 859–872.  相似文献   

4.
This paper presents a comparison of the geographical distribution of genetic variability at mitochondrial and nuclear loci among pearl oyster populations from the tropical American Pacific coast (Pinctada mazatlanica). Surprisingly, both mitochondrial and nuclear gene variability decreased regularly from north to south of the studied area, which, altogether with a significant correlation between genetic and geographical distances for mtDNA, suggests a recent colonization or re-colonization of the southern areas. However, the loss of diversity between north and south was much more important for mitochondrial than for nuclear DNA, and this did not translate into measurable fixation index at nuclear loci (theta = 0.03, n.s.), contrary to the mitochondrial data (theta = 0.18*). Smaller effective size of mtDNA accentuated by a strong male-biased effective sex ratio and step-by-step colonization from northern areas can explain this discrepancy among natural populations of this protandric species.  相似文献   

5.
Abstract.— Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The “three‐times rule” states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three‐times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three‐times rule predicts nuclear gene patterns that can help detect the action of selection. The three‐times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.  相似文献   

6.
Abstract Genetic markers that differ in mode of inheritance and rate of evolution (a sex‐linked Z‐specific micro‐satellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro‐ and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex‐specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon‐Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (φCT= 0.189, P < 0.01; φSC= 0.059, P < 0.01, respectively). Eleven of 17 mtDNA haplotypes were restricted to a single breeding region. Genetic differences among regions were considerably lower for nuclear DNA loci (sex‐linked: φST= 0.001, P > 0.05; biparentally inherited microsatellites: mean θ= 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 × 10‐4 and 1.28 × 10‐2, respectively). Effective population size for mtDNA was estimated to be at least three times lower than that for biparental genes (30,671 and 101,528, respectively). Large disparities in population sizes among breeding areas greatly reduces the proportion of total genetic variance captured by dispersal, which may accelerate rates of inbreeding (i.e., promote higher coancestries) within populations due to nonrandom pairing of males with females from the same breeding population.  相似文献   

7.
Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.   相似文献   

8.
We study 117 Pacific walrus samples from three rookeries within the western part of Chukchi Sea (Cape Vankarem, Cape Serdtse-Kamen, and Kolyuchin Island). We analyze the variability of nuclear (20 microsatellite loci) and mitochondrial DNA (three fragments). Two microsatellite loci which are described as microsatellites for the first time are used in this study: repeated sequences within introns of Coro1c and Plod2 genes. A high degree of genetic diversity is demonstrated for both nuclear and mitochondrial markers compared to Atlantic walrus. A high degree of genetic diversity is preserved within populations of Pacific walrus, despite a strong decline in the recent past. We discover the absence of significant differentiation for microsatellite loci and the presence of weak differentiation for mtDNA (mainly for a D-loop fragment). Walrus specimens that use the rookeries of the western part of Chukchi Sea are thought to belong to a single reproductive group.  相似文献   

9.
Sequence variation in nuclear and mitochondrial genes of the giant sea bass Stereolepis gigas collected from the Pacific coast and the northern Sea of Cortez was examined. Restriction fragment length polymorphism analysis and direct sequencing showed extremely low mtDNA sequence diversity (13 closely related haplotypes with no evidence of geographical population subdivision). The mitochondrial haplotype mismatch distribution is consistent with a population expansion following the Last Pleistocene glaciation. Differences in single nucleotide polymorphism frequencies between Pacific and Sea of Cortez populations were detected at two of four nuclear loci, which may reflect natural selection or genetic drift in populations with low effective numbers of males. Although Pacific coast and Sea of Cortez populations of giant sea bass do not exhibit the mitochondrial phylogenetic break characteristic of many species with disjunct Pacific and Gulf populations, the possibility of genetic differentiation at nuclear loci suggests that a cautious approach to broodstock selection for captive breeding and restoration programmes be exercised.  相似文献   

10.
The number of Asian black bears (Ursus thibetanus) in Japan has been reduced and their habitats fragmented and isolated because of human activities. Our previous study examining microsatellite DNA loci revealed significant genetic differentiation among four local populations in the western part of Honshu. Here, an approximate 700-bp nucleotide sequence of mitochondrial DNA (mtDNA) control region was analysed in 119 bears to infer the evolutionary history of these populations. Thirteen variable sites and variation in the number of Ts at a T-repeat site were observed among the analysed sequences, which defined 20 mtDNA haplotypes with the average sequence divergence of 0.0051 (SD = 0.00001). The observed haplotype frequencies differed significantly among the four populations. Phylogeographic analysis of the haplotypes suggested that black bears in this region have gone through two different colonisation histories, since the observed haplotypes belonged to two major monophyletic lineages and the lineages were distributed with an apparent border. The spatial genetic structure revealed by using mtDNA was different from that observed using microsatellite DNA markers, probably due to female philopatry and male-biased dispersal. Since nuclear genetic diversity will be lost in the three western populations because of the small population size and genetic isolation, their habitats need to be preserved, and these four populations should be linked to each other by corridors to promote gene flow from the easternmost population with higher nuclear genetic diversity.  相似文献   

11.
Mitochondrial DNA under siege in avian phylogeography   总被引:16,自引:1,他引:15  
Mitochondrial DNA (mtDNA) has been the workhorse of research in phylogeography for almost two decades. However, concerns with basing evolutionary interpretations on mtDNA results alone have been voiced since the inception of such studies. Recently, some authors have suggested that the potential problems with mtDNA are so great that inferences about population structure and species limits are unwarranted unless corroborated by other evidence, usually in the form of nuclear gene data. Here we review the relative merits of mitochondrial and nuclear phylogeographical studies, using birds as an exemplar class of organisms. A review of population demographic and genetic theory indicates that mitochondrial and nuclear phylogeographical results ought to concur for both geographically unstructured populations and for populations that have long histories of isolation. However, a relatively common occurrence will be shallow, but geographically structured mtDNA trees--without nuclear gene corroboration--for populations with relatively shorter periods of isolation. This is expected because of the longer coalescence times of nuclear genes (approximately four times that of mtDNA); such cases do not contradict the mtDNA inference of recent isolation and evolutionary divergence. Rather, the nuclear markers are more lagging indicators of changes in population structure. A review of the recent literature on birds reveals the existence of relatively few cases in which nuclear markers contradict mitochondrial markers in a fashion not consistent with coalescent theory. Preliminary information from nuclear genes suggests that mtDNA patterns will prove to be robust indicators of patterns of population history and species limits. At equilibrium, mitochondrial loci are generally a more sensitive indicator of population structure than are nuclear loci, and mitochondrial estimates of F(ST)-like statistics are generally expected to exceed nuclear ones. Hence, invoking behavioural or ecological explanations of such differences is not parsimonious. Nuclear genes will prove important for quantitative estimates of the depths of haplotype trees, rates of population growth and values of gene flow.  相似文献   

12.
The authors used allozymes encoded by nuclear genes and restriction enzyme analysis of mitochondrial DNA (mtDNA) to study secondary contact between westslope (Salmo clarki lewisi) and Yellowstone cutthroat trout (Salmo clarki bouvieri) in Forest Lake, Montana. Eleven diagnostic allozyme loci identified this as a random-mating hybrid swarm. No parental, first-generation hybrid or backcross genotypes were detected in the sample (N = 33), and genotype distributions at all the variable loci conform to binomial expectations. There is little linkage disequilibrium between the diagnostic loci, indicating that the nuclear genomes of the two subspecies are largely randomly associated. The allozymes and mtDNA give identical estimates of the proportional genetic contribution of each subspecies. Thus, males and females from both subspecies have contributed equally to this hybrid swarm. Although these subspecies have accumulated substantial genetic divergence between their nuclear (Nei's D = 0.34) and mitochondrial (2% sequence divergence) genomes, this has not resulted in a genetic barrier to exchange between them.  相似文献   

13.
The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants (Loxodonta cyclotis) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male‐mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male‐mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.  相似文献   

14.
BACKGROUND: Individuals from an introduced population of longtail macaques on Mauritius have been extensively used in recent research. This population has low MHC gene diversity, and is thus regarded as a valuable resource for research. METHODS: We investigated the genetic diversity of this population using multiple molecular markers located in mitochondrial DNA and microsatellite DNA loci on the autosomes and the Y chromosome. We tested samples from 82 individuals taken from seven study sites. RESULTS AND CONCLUSIONS: We found this population to be panmictic, with a low degree of genetic variability. On the basis of an mtDNA phylogeny, we inferred that these macaques' ancestors originated from Java in Asia. Weak gametic disequilibrium was observed, suggesting decay of non-random associations between genomic genes at the time of founding. The results suggest that macaques bred in Mauritius are valuable as model animals for biomedical research because of their genetic homogeneity.  相似文献   

15.
How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site‐associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single‐nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.  相似文献   

16.
Sequence data from the first hypervariable segment of the mitochondrial DNA control region of 124 subjects belonging to three African-Brazilian and three Brazilian Indian populations were compared with information related to 12 protein genetic loci from 601 persons living in the same localities. There is high diversity among the mtDNA sites, and the most variable in one ethnic group are not the most variable in the other. No differences in gene diversity between populations within ethnic groups were observed, but the Indians showed a reduced variability. Much more interpopulation variation was observed in the mtDNA data than in the protein set. The relationships obtained for the six populations, however, are the same regardless whether mtDNA or protein loci are considered. African-Brazilians from Porto Alegre and Salvador, situated 3,000 km apart, are more similar to each other than both are to Paredão, despite the geographical proximity between Porto Alegre and Paredão, which are just 50 km apart. The tree topology in relation to the three Indians groups, on the other hand, is that expected when languages, culture, and geography are considered. Am J Phys Anthropol 103:147–156, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
In the 1930s, the Scandinavian brown bear was close to extinction due to vigorous extermination programmes in Norway and Sweden. Increased protection of the brown bear in Scandinavia has resulted in the recovery of four subpopulations, which currently contain close to 1000 individuals. Effective conservation and management of the Scandinavian brown bear requires knowledge of the current levels of genetic diversity and gene flow among the four subpopulations. Earlier studies of mitochondrial DNA (mtDNA) diversity revealed extremely low levels of genetic variation, and population structure that grouped the three northern subpopulations in one genetic clade and the southernmost subpopulation in a second highly divergent clade. In this study, we extended the analysis of genetic diversity and gene flow in the Scandinavian brown bear using data from 19 nuclear DNA microsatellite loci. Results from the nuclear loci were strikingly different than the mtDNA results. Genetic diversity levels in the four subpopulations were equivalent to diversity levels in nonbottlenecked populations from North America, and significantly higher than levels in other bottlenecked and isolated brown bear populations. Gene flow levels between subpopulations ranged from low to moderate and were correlated with geographical distance. The substantial difference in results obtained using mtDNA and nuclear DNA markers stresses the importance of collecting data from both types of genetic markers before interpreting data and making recommendations for the conservation and management of natural populations. Based on the results from the mtDNA and nuclear DNA data sets, we propose one evolutionarily significant unit and four management units for the brown bear in Scandinavia.  相似文献   

18.
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (= 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000–4000 years in association with a dramatic population decline. In addition, we obtained near‐complete 11‐loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of ‘new’ microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current‐day conservation strategies.  相似文献   

19.
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analysed data from the Steller's sea lion, Eumetiopias jubatus , where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei's gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.  相似文献   

20.
A white-tailed deer (Odocoileus virginianus) population in northeastern Minnesota and a mule deer (O. hemionus) population in the Bridger Mountains Montana, have previously been shown to be spatially subdivided into contiguous subpopulations. We assessed the degree of genetic differentiation among subpopulations and tested the hypothesis that differentiation will be greater for mitochondrial DNA (mtDNA) than for nuclear-encoded allozymes. Differentiation of the white-tailed deer subpopulations was significant for two allozyme loci but not for mtDNA, and the overall degree of differentiation was low. Gene flow, recent founding of the subpopulations, and polygamous breeding structure may all have contributed to this pattern. Greater differentiation was evident among disjunct populations than between the contiguous subpopulations of white-tailed deer. The contiguous mule deer subpopulations were significantly differentiated for mtDNA and one allozyme locus. Differentiation was greater for mtDNA than for allozymes. These results are consistent with demographic data that indicate mule deer males disperse more than do females. Disjunct mule deer populations may be similar or dramatically different in mtDNA haplotype frequencies that do not necessarily vary with geographic distance. Current and historical gene flow and breeding structure will influence population genetic patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号