首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitotic divisions in the plasmodia of Physarum polycephalum were advanced by about 1 h by applying to the plasmodial surface extracts of other plasmodia. Advancement of mitosis was greatest when the extracts were prepared from plasmodia harvested at late G2. The activity in the extracts responsible for the advancement of mitosis was found to be heat labile and non-dialysable. It is suggested that this activity belongs to proteins responsible for the regulation of mitosis.  相似文献   

2.
The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard model of cell cycle regulation. Using controlled synchronisation techniques, confocal microscopy to visualise key organelles and fluorescence in situ hybridization (FISH) to follow the movements and replication of genes and telomeres, we have re-analysed the timing and progression of mitotic events. The asynchronous duplications of the P. falciparum centrosome equivalents, the centriolar plaques, are established and these are correlated with chromosome and nuclear divisions in a new model of P. falciparum schizogony. Our results improve the resolution of the cell cycle and its phases during P. falciparum IE development, showing that asynchronous, independent nuclear division occurs during schizogony, with the centriolar plaques playing a major role in regulating mitotic progression.  相似文献   

3.
Previous studies have shown that breast tissues and breast cell lines convert progesterone (P) to 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP) and that 3αHP suppresses, whereas 5αP promotes, cell proliferation and detachment. The objectives of the current studies were to determine if the 5αP- and 3αHP-induced changes in cell numbers are due to altered rates of mitosis and/or apoptosis, and if 3αHP and 5αP act on tumorigenic and non-tumorigenic cells, regardless of estrogen (E) and P receptor status. The studies were conducted on tumorigenic (MCF-7, MDA-MB-231, T47D) and non-tumorigenic (MCF-10A) human breast cell lines, employing several methods to assess the effects of the hormones on cell proliferation, mitosis, apoptosis and expression of Bcl-2, Bax and p21. In all four cell lines, 5αP increased, whereas 3αHP decreased cell numbers, [3H]thymidine uptake and mitotic index. Apoptosis was stimulated by 3αHP and suppressed by 5αP. 5αP resulted in increases in Bcl-2/Bax ratio, indicating decreased apoptosis; 3αHP resulted in decreases in Bcl-2/Bax ratio, indicating increased apoptosis. The effects of either 3αHP or 5αP on cell numbers, [3H]thymidine uptake, mitosis, apoptosis, and Bcl-2/Bax ratio, were abrogated when cells were treated simultaneously with both hormones. The expression of p21 was increased by 3αHP, and was unaffected by 5αP. The results provide the first evidence that 5αP stimulates mitosis and suppresses apoptosis, whereas 3αHP inhibits mitosis and stimulates apoptosis. The opposing effects of 5αP and 3αHP were observed in all four breast cell lines examined and the data suggest that all breast cancers (estrogen-responsive and unresponsive) might be suppressed by blocking 5αP formation and/or increasing 3αHP. The findings further support the hypothesis that progesterone metabolites are key regulatory hormones and that changes in their relative concentrations in the breast microenvironment determine whether breast tissues remain normal or become cancerous.  相似文献   

4.
Late 8-cell blastomeres were harvested within the first 45 min after entering mitosis. Some mitotic cells were analysed within the ensuing 2 h for the organization of their surface in relation to their progress through mitosis. Whereas in most late interphase cells microvilli were restricted to a discrete polar region, in mitotic cells at all stages from early metaphase to immediately postcytokinesis microvilli were found to be present over more of the cell surface. Other mitotic cells were placed in nocodazole to arrest them in M-phase for up to 10 h. They were found to show an even more extensive distribution of microvilli over the whole surface, the longer periods of incubation yielding more extended coverage such that many cells no longer appeared to have any residual surface polarity. Removal from nocodazole at all time points from 1 to 10 h resulted in most cells completing mitosis to yield pairs of cells which, in most cases, resembled pairs derived from nonarrested blastomeres and in which a defined polar area of microvilli was restored. However, the percentage of differentiative divisions decreased after 6 h arrest. If, instead of removing cells from nocodazole, they were placed in both nocodazole and cytochalasin D (CCD) for periods of up to 3 h, most microvilli retracted to reveal a tight polar zone of CCD-resistant microvilli. This result suggests that a heterogeneity of cytocortical organization may still exist within the arrested mitotic cell. We propose a model to explain the origin of this heterogeneity of organization and its relationship to the generation of cell diversity.  相似文献   

5.
In contrast to common meiotic gene conversion, mitotic gene conversion, because it is so rare, is often ignored as a process influencing allelic diversity. We show that if there is a large enough number of premeiotic cell divisions, as seen in many organisms without early germline sequestration, such as plants, this is an unsafe position. From examination of 1.1 million rice plants, we determined that the rate of mitotic gene conversion events, per mitosis, is 2 orders of magnitude lower than the meiotic rate. However, owing to the large number of mitoses between zygote and gamete and because of long mitotic tract lengths, meiotic and mitotic gene conversion can be of approximately equivalent importance in terms of numbers of markers converted from zygote to gamete. This holds even if we assume a low number of premeiotic cell divisions (approximately 40) as witnessed in Arabidopsis. A low mitotic rate associated with long tracts is also seen in yeast, suggesting generality of results. For species with many mitoses between each meiotic event, mitotic gene conversion should not be overlooked.

Gene conversion associated with meiosis has long been a focus of attention in population genomics, but mitotic conversion has been relatively overlooked as it was thought to be rare. Analysis in plants suggests that this could be a mistake; long tract lengths and multiple mitoses in species lacking germline sequestration suggest that mitotic conversion, although rare per mitosis, should not be ignored.  相似文献   

6.
During Caenorhabditis elegans embryogenesis the primordial germ cell, P(4), is generated via a series of unequal divisions. These divisions produce germline blastomeres (P(1), P(2), P(3), P(4)) that differ from their somatic sisters in their size, fate and cytoplasmic content (e.g. germ granules). mes-1 mutant embryos display the striking phenotype of transformation of P(4) into a muscle precursor, like its somatic sister. A loss of polarity in P(2) and P(3) cell-specific events underlies the Mes-1 phenotype. In mes-1 embryos, P(2) and P(3) undergo symmetric divisions and partition germ granules to both daughters. This paper shows that mes-1 encodes a receptor tyrosine kinase-like protein, though it lacks several residues conserved in all kinases and therefore is predicted not to have kinase activity. Immunolocalization analysis shows that MES-1 is present in four- to 24-cell embryos, where it is localized in a crescent at the junction between the germline cell and its neighboring gut cell. This is the region of P(2) and P(3) to which the spindle and P granules must move to ensure normal division asymmetry and cytoplasmic partitioning. Indeed, during early stages of mitosis in P(2) and P(3), one centrosome is positioned adjacent to the MES-1 crescent. Staining of isolated blastomeres demonstrated that MES-1 was present in the membrane of the germline blastomeres, consistent with a cell-autonomous function. Analysis of MES-1 distribution in various cell-fate and patterning mutants suggests that its localization is not dependent on the correct fate of either the germline or the gut blastomere but is dependent upon correct spatial organization of the embryo. Our results suggest that MES-1 directly positions the developing mitotic spindle and its associated P granules within P(2) and P(3), or provides an orientation signal for P(2)- and P(3)-specific events.  相似文献   

7.
本文用去壁低渗法,研究了九个茶树品种花蕾体细胞染色体的核型。结果表明,在九个品种中,除了政和大白茶的体细胞染色体数目为2n=45是三倍体外,其余八个品种的染色体数目均为2n=30是二倍体。所有品种的核型特征各不相同,乔木大叶型品种的核型为较对称的“2A”类型,而灌木中叶型的品种为较不对称的“2B”类型。研究指出茶树乔木大叶型品种是较原始的类型,而灌木中小叶型品种是较进化的类型;采用花蕾为材料研究茶树染色体是较为简便而有效的方法。  相似文献   

8.
9.
Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.  相似文献   

10.
Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called “mating type systems”. Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.  相似文献   

11.
The tetrasporangial initial in Palmaria palmata (L.) O. Kuntze (formerly Rhodymenia palmata (L.) Greville) arises from a cortex cell which enlarges and deposits a protein-rich wall layer. This cell undergoes mitosis to form a tetrasporocyte and a stalk cell. Synaptonemal complexes are formed in the sporocyte nucleus while in the cytoplasm floridean starch is deposited in association with ER or with particles presumed to be ribosomes. Microbody-like structures become numerous between the nuclear envelope and perinuclear ER, and clusters of non-membranous, spherical structures also are associated with the nucleus. Chromatin condensation is reversed following pachytene and a prolonged diffuse stage ensues, when dictyosomes and ER produce vesicles which deposit mucilage rich in sulfated and acidic polysaccharides around the tetrasporocyte. A conspicuous lenticular thickening of the mucilage sheath develops at the apical end of the sporangium. Dictyosomes are frequently associated with mitochondria which may be associated with chloroplasts. Following nuclear divisions the tetrasporocyte is cleaved into four spores by sequentially initiated, but simultaneously completed periclinal and anticlinal furrows. When mucilage deposition ceases, the dictyosomes begin to produce vesicles with glycoprotein-rich contents. These vesicles are abundant in released tetraspores, and they probably contain adhesive material aiding in the attachment of the liberated spores.  相似文献   

12.
Studies of newt (Triturus or Diemictylus viridescens) erythropoietic cells showed that DNA synthesis and mitosis normally occur throughout most of the developmental process. Mitotic divisions were found in all immature precursor stages from the proerythroblast to the highly hemoglobinized reticulocyte. Mitoses were absent in mature erythrocytes. Radioautographic examination of thymidine-3H incorporation into DNA revealed that all erythroid cells except the mature erythrocyte were labeled. Microphotometric measurements of Feulgen-stained smears showed that all immature stages were undergoing DNA synthesis whereas the mature erythrocyte was inactive. The results obtained from three independent methods clearly demonstrate that (a) no loss of DNA or of chromosomes occurs during erythrocytic development and (b) highly hemoglobinized and, therefore, well-differentiated cells normally do undergo DNA synthesis and mitosis.  相似文献   

13.
Drosophila ovarian cysts arise through a series of four synchronous incomplete mitotic divisions. After each round of mitosis, a membranous organelle, the fusome, grows along the cleavage furrow and the remnants of the mitotic spindle to connect all cystocytes in a cyst. The fusome is essential for the pattern and synchrony of the mitotic cyst divisions as well as oocyte differentiation. Using live cell imaging, green fluorescent protein-tagged proteins, and photobleaching techniques, we demonstrate that fusomal endomembranes are part of a single continuous endoplasmic reticulum (ER) that is shared by all cystocytes in dividing ovarian cysts. Membrane and lumenal proteins of the common ER freely and rapidly diffuse between cystocytes. The fusomal ER mediates intercellular ER connectivity by linking the cytoplasmic ER membranes of all cystocytes within a cyst. Before entry into meiosis and onset of oocyte differentiation (between region 1 and region 2A), ER continuity between cystocytes is lost. Furthermore, analyses of hts and Dhc64c mutants indicate that intercellular ER continuity within dividing ovarian cysts requires the fusome cytoskeletal component and suggest a possible role for the common ER in synchronizing mitotic cyst divisions.  相似文献   

14.
New Insights into the Role of the Maize Ameiotic1 Locus   总被引:1,自引:0,他引:1       下载免费PDF全文
I. Golubovskaya  N. Avalkina    W. F. Sheridan 《Genetics》1997,147(3):1339-1350
In maize the am1-1 mutant allele results in both the male and female meiocytes undergoing mitosis in place of the meiotic divisions. A second mutant allele am1-praI enables both the male and female meiocytes to proceed to the early zygotene stage of meiotic prophase I before being blocked. Here we report on three new alleles that allow all male meiocytes to undergo mitosis but in female meiocytes approximately one quarter (am1-2), one half (am1-485), or all (am1-489) of them are blocked at an abnormal interphase stage. Previous analysis has shown that am1-praI is dominant to am1-1 in male meiocytes. Cytological analysis of heteroallelic combinations in female meiocytes now indicates a dominance relationship of am1-praI > am1-1 > am1-2/am1-485 > am1-489. The evidence provided by the female phenotypes of the new mutant alleles suggest that, whereas the normal am1 allele is required for the meiocytes to proceed through meiosis, a partially functional allele may be required for their diversion into a mitotic division. The partial or complete blockage of mitosis in female meiocytes carrying the new am1 alleles rules out the possibility that the mitotic division of mutant meiocytes reflects a simple default pathway for cells that cannot initiate meiosis. This locus may have a dual function.  相似文献   

15.
Nuclear divisions in plasmodia of Physarum polycephalum were advanced by applying immunologically purified plasmodial extracts of late G2 phase on the surface of plasmodia which were 1.5 h before the third mitosis. The purification of G2 extracts was achieved by interaction of antibodies prepared against the antigens of early S phase plasmodia with the antigens of late G2 plasmodia. There was no advancement of mitosis by extracts prepared from early S phase plasmodia. Untreated G2 extracts did not accelerate mitosis with the same effectiveness as did antibody purified G2 extracts.  相似文献   

16.
K Ahmad  K G Golic 《Genetics》1998,148(2):775-792
We investigated the fate of dicentric chromosomes in the mitotic divisions of Drosophila melanogaster. We constructed chromosomes that were not required for viability and that carried P elements with inverted repeats of the target sites (FRTs) for the FLP site-specific recombinase. FLP-mediated unequal sister-chromatid exchange between inverted FRTs produced dicentric chromosomes at a high rate. The fate of the dicentric chromosome was evaluated in the mitotic cells of the male germline. We found that dicentric chromosomes break in mitosis, and the broken fragments can be transmitted. Some of these chromosome fragments exhibit dominant semilethality. Nonlethal fragments were broken at many sites along the chromosome, but the semilethal fragments were all broken near the original site of sister-chromatid fusion, and retained P element sequences near their termini. We discuss the implications of the recovery and behavior of broken chromosomes for checkpoints that detect double-strand break damage and the functions of telomeres in Drosophila.  相似文献   

17.
Protoplast cultures of Vicia hajastana have a high division frequency. However, 20–40% of the microcolonies fail to develop beyond the 20-30-cell stage. Aneuploids and polyploids were found in early divisions and persisted in older cultures. The resulting protoplast-derived suspension culture differed karyologically from the original culture. Karyokinesis and cytokinesis were studied using simultaneous staining of microtubules (MT) by immunofluorescence, DNA by Hoechst 33258 (2-[2-(4-hydroxyphenyl)-6-benzimidazoyl]-6-[1-methyl-4-piperazyl]benzimidazole) and cell walls by Calcofluor. Freshly prepared protoplasts showed mitoses and high frequencies of binucleate cells, which probably resulted mainly from failure of cytokinesis. In early divisions, many mitoses showed metaphase chromosomes with kinetochore MT but lacking polar MT. These aberrant mitoses probably accounted for an increase in hyperploid cells observed in protoplast cultures. Multipolar spindles, which gave rise to hypoploid cells, were also seen in the early divisions. Telophase abnormalities included dislocated phragmoplasts and incomplete formation of cross walls. Many divisions resulted in daughter nuclei of unequal size. Unequal segregation of chromosomes was detected by cytofluorimetric measurements of telophase nuclei stained with Hoechst. After 5 d of culture, 91% of the divisions with incomplete cross walls also contained different-size nuclei; conversely, 78% of the divisions with fully formed cross walls contained nuclei of equal size. The malfunctioning of spindles and phragmoplasts in the same cells indicates a functional interdependence of the different MT configurations in mitosis. During the first 24 h of culture, a high frequency of abnormalities was found in spindles, cross-wall formation and chromosome segregation; this was reduced substantially in the cells undergoing first division by 48 h. The data indicate that it may be possible to manipulate the frequency of abnormalities by controlling the onset of the first division in protoplast cultures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MT microtubule(s) - PB prophase band(s) - PNF perinuclear fluorescence - PPB pre-prophase band  相似文献   

18.
Individual myogenic cells were isolated from the pectoralis muscles of chick embryos from days 8-14 of embryogenesis. When separately cloned, these cells produced three types of colonies in culture: (1) Positive: all cells in the clone were terminally differentiated muscle cells; (2) negative: no cells in the clone were terminally differentiated muscle; (3) mixed: some cells in the clone were terminally differentiated muscle. Positive clones from all ages tended to contain 2n cells (n = 0, 1, 2, 3, 4). Negative clones were found in all sizes and did not cluster around powers of 2 in cell number. Mixed clones were, by far, the most common type among those clones larger than 24 in cell number. Estimates of cell numbers in embryonic muscle tissue revealed that, while the numbers of cells in all myogenic compartments increased steadily with embryonic age, the number and percentage of precursor cells that produced large mixed clones increased dramatically. Subclones, prepared from populations of cells equivalent to large mixed clones, yielded both small positive and large mixed colonies. This indicated that the precursors to the large mixed clones were also precursors to the smaller positive clones. These observations suggest a model for the myogenic lineage in which there exists a stem cell that can generate, by a series of asymmetric divisions, cohorts of terminally differentiated muscle cells. The model can explain the asynchrony of production of terminally differentiated muscle cells both in vitro and in vivo.  相似文献   

19.
The accumulation of DNA damage (thymine dimers and 6-4 photoproducts) induced by ultraviolet-B radiation was studied in Palmaria palmata (L.) O. Kuntze under different light and temperature conditions, using specific monoclonal antibodies and subsequent chemiluminescent detection. Both types of damage were repaired much faster under ultraviolet-A radiation (UVAR) plus photosynthetically active radiation (PAR) than in darkness, which indicates photoreactivating activity. At 12° C, all thymine dimers were repaired after 2 h irradiation with UVAR plus PAR, whereas 6-4 photoproducts were almost completely repaired after 4 h. After 19 h of darkness, almost complete repair of 6-4 photoproducts was found, and 67% of the thymine dimers were repaired. In a second set of experiments, repair of DNA damage under UVAR plus PAR was compared at three different temperatures (0, 12, and 25° C). Again, thymine dimers were repaired faster than 6-4 photoproducts at all three temperatures. At 0° C, significant repair of thymine dimers was found but not of 6-4 photoproducts. Significant repair of both thymine dimers and 6-4 photoproducts occurred at 12 and 25° C. Optimal repair efficiency was found at 25° C for thymine dimers but at 12° C for 6-4 photoproducts, which suggests that the two photorepair processes have different temperature characteristics.  相似文献   

20.
In situ pancreatic DNaseI digestions were used as probes to study the structural organization of facultative and constitutive heterochromatin during both mitotic and meiotic divisions. Three different types of heterochromatic regions from three insect species were chosen for this study. These regions had been previously characterized by in situ treatments with restriction endonucleases (AT and GC rich DNA sequences). Progressive increase in DNaseI concentration (from 10 to 200 ng/ml) or in incubation time (from 5 to 30 min) revealed a specific pattern of sequential digestion of the constitutive heterochromatic regions, the centromeric ones (AT-rich DNA) being the most resistant to DNaseI action. The interstitial C-bands (with AT or GC-rich DNA) were more sensitive to DNaseI, and the band 4.4 from Baetica ustalata was the most resistant of the non-centromeric bands. Similar results were obtained during meiosis, but increased accessibility to DNAseI was observed compared to mitosis. DNA methylation in the non-centromeric band 4.4 of B. ustulata could be responsible for its differential digestion with respect to the remaining intercalar heterochromatin. Facultatively heterochromatic regions (X chromosomes) were found to exhibit a differential response to DNaseI attack from mitosis to meiosis. While they behaved as cuchromatin during mitosis, they were the most resistant together with centromeric heterochromatin regions, during metaphase I and II. The different responses to digestion of the X chromosome and X-derived regions between somatic and meiotic divisions are probably a consequence of the changes in the organization of this chromosome during the facultative heterochromatinization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号