首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive phenotypic plasticity, the ability of a genotype to develop a phenotype appropriate to the local environment, allows organisms to cope with environmental variation and has implications for predicting how organisms will respond to rapid, human-induced environmental change. This review focuses on the importance of developmental selection, broadly defined as a developmental process that involves the sampling of a range of phenotypes and feedback from the environment reinforcing high-performing phenotypes. I hypothesize that understanding the degree to which developmental selection underlies plasticity is key to predicting the costs, benefits, and consequences of plasticity. First, I review examples that illustrate that elements of developmental selection are common across the development of many different traits, from physiology and immunity to circulation and behavior. Second, I argue that developmental selection, relative to a fixed strategy or determinate (switch) mechanisms of plasticity, increases the probability that an individual will develop a phenotype best matched to the local environment. However, the exploration and environmental feedback associated with developmental selection is costly in terms of time, energy, and predation risk, resulting in major changes in life history such as increased duration of development and greater investment in individual offspring. Third, I discuss implications of developmental selection as a mechanism of plasticity, from predicting adaptive responses to novel environments to understanding conditions under which genetic assimilation may fuel diversification. Finally, I outline exciting areas of future research, in particular exploring costs of selective processes in the development of traits outside of behavior and modeling developmental selection and evolution in novel environments.  相似文献   

2.
Traits can evolve both in response to direct selection and in response to indirect selection on other linked traits. Although the evolutionary significance of coupled traits (e.g., through shared components of developmental pathways, or through competition for shared developmental resources) is now well accepted, we know comparatively little about how developmental coupling may restrict the independent responses of two or more phenotypically plastic traits in response to conflicting environmental cues. Such studies are important because coupled development, if present, could act as an important limit to the evolution of functionally independent plasticity in multiple traits. I tested whether developmental coupling can restrict the direction of plastic responses by studying how penis form and leg form--both highly plastic traits of barnacles--varied in response to differences in conspecific density and water velocity. Penis length and leg length in Balanus glandula varied in parallel with variation in wave-exposure but varied in opposite directions with variation in conspecific density. This study represents one of the rare tests of developmental coupling between multiple (demonstrably adaptive) plastic traits: Barnacle legs and penises appear to exhibit modular development that can respond concurrently--yet in independent directions--to conflicting environmental cues.  相似文献   

3.
This case study of adaptation in Arabidopsis thaliana shows that natural selection on early life stages can be intense and can influence the evolution of subsequent traits. Two mechanisms contribute to this influence: pleiotropy across developmental stages and developmental niche construction. Examples are given of pleiotropy of environmentally cued development across life stages, and potential ways that pleiotropy can be relieved are discussed. In addition, this case study demonstrates how the timing of prior developmental transitions determines the seasonal environment experienced subsequently, and that such developmental niche construction alters phenotypic expression of subsequent traits, the expression of genetic variation of those traits, and natural selection on those traits and alleles associated with them. As such, developmental niche construction modifies pleiotropic relationships across the life cycle in ways that influence the dynamics of adaptation. Understanding the genetic basis of life‐cycle variation therefore requires consideration of environmental effects on pleiotropy.  相似文献   

4.
Species may be able to respond to changing environments by a combination of adaptation and migration. We study how adaptation affects range shifts when it involves multiple quantitative traits evolving in response to local selection pressures and gene flow. All traits develop clines shifting in space, some of which may be in a direction opposite to univariate predictions, and the species tracks its environmental optimum with a constant lag. We provide analytical expressions for the local density and average trait values. A species can sustain faster environmental shifts, develop a wider range and greater local adaptation when spatial environmental variation is low (generating low migration load) and multitrait adaptive potential is high. These conditions are favoured when nonlinear (stabilising) selection is weak in the phenotypic direction of the change in optimum, and genetic variation is high in the phenotypic direction of the selection gradient.  相似文献   

5.
Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology.  相似文献   

6.
Referring the developmental canalization to stabilizing selection may be a bias that results from the ignorance of developmental mechanisms. Considering the morphological evolution of one-cell trichomes in Draba plants makes it clear that the transition from continuous variation in morphological traits to developmental creods occurs in the evolution of remote lineages of the genus irrespective of contribution to the net fitness. Morphological diversification of trichome branching is not under selection control, being a physical consequence of the trichome cell volume growth equilibrated by complication of the cell surface shape. At the start of evolution, the trichome development refers not to an individual trichome, but rather to repetitive trichome modules (branches), whose spatiotemporal order is arbitrary, except that some variants of branching depend on events that occur at earlier developmental stages more than others. Under selection fluctuating at random, or with no selection at all, fixing of these variants leads to the formation of trichome ontogeny, in which earlier developmental stages correspond to later stages of developmental evolution.  相似文献   

7.
The diversity in colour patterns on butterfly wings provides great potential for understanding how developmental mechanisms may be modulated in the evolution of adaptive traits. In particular, we discuss concentric eyespot patterns, which have been shown by surgical experiments to be formed in response to signals from a central focus. Seasonal polyphenism shows how alternate phenotypes can develop through environmental sensitivity mediated by ecdysteroid hormones, whereas artificial selection and single gene mutants demonstrate genetic variation influencing the number, shape, size, position, and colour composition of the eyespots. The expression patterns of the regulatory gene Distal-less reveal that these changes can arise at several different developmental stages, and the phenotypes indicate that some forms of changed pattern may occur much more readily than others. Further study of the genes, of the developmental mechanisms, and of the functions of the patterns will provide novel insights about the evolution of morphological diversity. BioEssays 21:391–401, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

8.
Developmental Integration and the Evolution of Pleiotropy   总被引:8,自引:1,他引:7  
The different forms of morphological integration, developmental,functional, genetic, and evolutionary are defined and theirtheoretical relationships explored. Quantitative genetic modelspredict that the co-selection of traits involved in a commonfunction will lead to pleiotropic effects at the loci affectingthem while functionally-unrelated traits will be affected byseparate sets of loci (Wagner, 1996). The patterns of geneticvariation produced by these pleiotropic mutations and stabilizingselection for functionally and developmentally interacting traitsresults in their specific co-inheritance relative to other traits.This in turn leads to their co-ordinated response to selection.Therefore, functional and developmental integration lead togenetic integration which, in turn leads to evolutionary integration.Three examples of how developmental integration structures pleiotropyand morphological variation in non-human primate crania, artificially-modifiedhuman crania, and for the effects ofindividual genes on murinemandibular morphology are presented.  相似文献   

9.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   

10.
It is well-known that most genetic variation affects quantitative traits, and natural or artificial selection can act to change quantitative features of organisms more rapidly than qualitative ones. Surprisingly, variability is not confined to outbred species, but also occurs in inbred mice at a much higher rate than expected from known mutation rates. The size and shape of organisms and their constituent parts are, at least in part, controlled by the number of cell divisions, and there is published evidence for the existence of developmental clocks, which may count cell divisions. A molecular model for a developmental clock was previously proposed. It depends on the DNA methylation of repeated sequences of DNA, where the methylation of each additional sequence is tied to DNA synthesis and therefore cell division. The number of repeats specifies the number of divisions which will occur before a signal is produced which can activate or inactivate one or more genes. It is known that crossing over occurs between sister chromatids, and where tandemly repeated sequences occur unequal exchange can generate a larger or smaller number of repeats. An example of this is seen in the well-known variability of "minisatellite" sequences in human DNA. Unequal sister chromatid exchange can occur in mitotic and meiotic cells in the germ line, and in the case of developmental clock sequences could generate variation in clock length which in turn would directly affect quantitative traits. These events can be regarded as a special case of molecular drive during evolution.  相似文献   

11.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   

12.
A MODEL FOR DEVELOPMENT AND EVOLUTION OF COMPLEX MORPHOLOGICAL STRUCTURES   总被引:14,自引:0,他引:14  
How 'complex' or composite morphological structures like the mammalian craniomandibular region arise during development and how they are altered during evolution are two major unresolved questions in biology. Herein, we have described a model for the development and evolution of complex morphological structures. The model assumes that natural selection acts upon an array of phenotypes generated by variation in a variety of underlying genetic and epigenetic controlling factors. Selection refines the integration of the various morphogenetic components during ontogeny in order to produce a functioning structure and to adapt the organisms to differing patterns of environmental heterogeneity. The model was applied to the development and evolution of the mammalian mandible (which is used as a paradigm of complex morphological structures). The embryology of the mandible was examined in detail in order to identify the fundamental developmental units which are necessary to assemble the final morphological structure. The model is quite general since equivalent units exist for the development of many other biological structures. This model could be applied to many other developing morphological structures as well as other groups of organisms. For example, it can be applied to cell parameters during Drosophila development (Atchley, 1987). The model as discussed in this paper assumes that morphological changes in the mandible result from evolutionary changes in its underlying developmental units. The developmental units relate to characteristics of cellular condensations which are produced from the differentiation of embryonic neural crest cells. The developmental units include: the number of stem cells in preskeletal condensations (n), the time of initiation of condensation formation (t), the fraction of cells that is mitotically active within a condensation (f), the rate of division of these cells (r), and their rate of cell death (d). These units and their derivative structures are discussed in terms of types of tissue differentiation (chondrogenesis, osteogenesis, primary/secondary osteogenesis, intramembranous/endochondral ossification) and growth properties of major morphological regions of the mandible. Variation in these five units provides the developmental basis for ontogenetic and phylogenetic modification of mandibular morphology. We have discussed how these developmental units are influenced by (a) the cell lineage from which they arise, (b) epithelial-mesenchymal (inductive tissue) interactions, (c) regulation of cell differentiation, and (d) extrinsic factors such as muscles, teeth and hormones. Evidence was provided that variation in mandibular morphology is heritable, subject to modification by natural selection, and that divergence among different genetic stocks has apparently occurred through changes in these developmental units and their derivative structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A model is presented which permits integration of developmental information into genetic discussions about evolutionary change in morphology. Development of a trait is described in terms of an ontogenetic trajectory whose properties are defined by a small number of parameters. Some evolutionary aspects of development are examined from the perspective of this quantitative genetic model. Particular attention is given to the developmental origin of pleiotropic effects, developmental constraints, heterochrony, and the growth and morphogenesis of complex morphologies. The role of genetic maternal effects in mammalian development is briefly examined, particularly as it relates to selection on developmental traits.  相似文献   

14.
A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independently, and again others barely vary at all. Furthermore, it is well established that patterns of trait variation differ among species. Specifically, traits that serve different functions tend to be less correlated, as for instance forelimbs and hind limbs in bats and humans, compared with the limbs of quadrupedal mammals. Recently, a novel class of genetic elements has been identified in mouse gene-mapping studies that modify correlations among quantitative traits. These loci are called relationship loci, or relationship Quantitative Trait Loci (rQTL), and affect trait correlations by changing the expression of the existing genetic variation through gene interaction. Here, we present a population genetic model of how natural selection acts on rQTL. Contrary to the usual neo-Darwinian theory, in this model, new heritable phenotypic variation is produced along the selected dimension in response to directional selection. The results predict that selection on rQTL leads to higher correlations among traits that are simultaneously under directional selection. On the other hand, traits that are not simultaneously under directional selection are predicted to evolve lower correlations. These results and the previously demonstrated existence of rQTL variation, show a mechanism by which natural selection can directly enhance the evolvability of complex organisms along lines of adaptive change.  相似文献   

15.
Although heritability estimates for traits potentially under natural selection are increasingly being reported, their estimation remains a challenge if we are to understand the patterns of adaptive phenotypic change in nature. Given the potentially important role of selection on the early life phenotype, and thereby on future life history events in many fish species, we conducted a common garden experiment, using the Atlantic salmon (Salmo salar L.), with two major aims. The first objective is to determine how the site of origin, the paternal sexual tactic and additive genetic effects influence phenotypic variation of several morphological traits at hatching and emergence. The second aim is to test whether a link exists between phenotypic characteristics early in life and the incidence of male alternative tactics later in life. We found no evidence of a site or paternal effect on any morphological trait at hatching or emergence, suggesting that the spatial phenotypic differences observed in the natural river system from which these fish originated are mainly environmentally driven. However, we do find significant heritabilities and maternal effects for several traits, including body size. No direct evidence was found correlating the incidence of precocious maturation with early life characteristics. We suggest that under good growing conditions, body size and other traits at early developmental stages are not reliable cues for the surpassing of the threshold values associated with male sexual development.  相似文献   

16.
During neonatal development, tendons undergo a well orchestrated process whereby extensive structural and compositional changes occur in synchrony to produce a normal tissue. Conversely, during the repair response to injury, structural and compositional changes occur, but a mechanically inferior tendon is produced. As a result, developmental processes have been postulated as a potential paradigm for elucidation of mechanistic insight required to develop treatment modalities to improve adult tissue healing. The objective of this study was to compare and contrast normal development with injury during early and late developmental healing. Using backwards multiple linear regressions, quantitative and objective information was obtained into the structure-function relationships in tendon. Specifically, proteoglycans were shown to be significant predictors of modulus during early developmental healing but not during late developmental healing or normal development. Multiple independent parameters predicted percent relaxation during normal development, however, only biglycan and fibril diameter parameters predicted percent relaxation during early developmental healing. Lastly, multiple differential predictors were observed between early development and early developmental healing; however, no differential predictors were observed between late development and late developmental healing. This study presents a model through which objective analysis of how compositional and structural parameters that affect the development of mechanical parameters can be quantitatively measured. In addition, information from this study can be used to develop new treatment and therapies through which improved adult tendon healing can be obtained.  相似文献   

17.
In many studies, fluctuating asymmetry (FA) has been used as a measure of individual differences in developmental imprecision. A model of how variation in developmental imprecision is associated with variation in asymmetry is described and applied to important issues about FA. If individual differences in developmental imprecision exist, asymmetry due to developmental error should be leptokurtically distributed. Moreover, the greater the magnitude of individual differences, the greater the leptokurtosis. Asymmetry purportedly due to developmental error in a variety of species is indeed leptokurtically distributed. The level of leptokurtosis suggests that the CV in individual differences in underlying developmental imprecision is generally 20–25, consistent with it being a fitness trait. In addition, data suggest that: (1) the individual differences that underlie the developmental imprecision of different traits are largely shared across traits and not trait-specific; (2) the heritability of these individual differences may average between 35 and 55%, despite small heritabilities of individual trait FAs; and (3) correlations between FA and fitness traits or components suggest high correlations between underlying variation in developmental precision and fitness in many species. Theoretical implications are discussed.  相似文献   

18.
Irish VF  Benfey PN 《Plant physiology》2004,135(2):611-614
Developmental processes shape plant morphologies, which constitute important adaptive traits selected for during evolution. Identifying the genes that act in developmental pathways and determining how they are modified during evolution is the focus of the field of evolutionary developmental biology, or evo-devo. Knowledge of genetic pathways in the plant model Arabidopsis serves as the starting point for investigating how the toolkit of developmental pathways has been used and reused to form different plant body plans. One productive approach is to identify genes in other species that are orthologous to genes known to control developmental pathways in Arabidopsis and then determine what changes have occurred in the protein coding sequence or in the gene's expression to produce an altered morphology. A second approach relies on natural variation among wild populations or crop plants. Natural variation can be exploited to identify quantitative trait loci that underlie important developmental traits and, thus, define those genes that are responsible for adaptive changes. The possibility of applying comparative genomics approaches to Arabidopsis and related species promises profound new insights into the interplay of evolution and development.  相似文献   

19.
Many quantitative traits are composites of other traits that contribute differentially to genetic variation. Quantitative trait locus (QTL) mapping of these composite traits can benefit by incorporating the mechanistic process of how their formation is mediated by the underlying components. We propose a dissection model by which to map these interconnected components traits under a joint likelihood setting. The model can test how a composite trait is determined by pleiotropic QTLs for its component traits or jointly by different sets of QTLs each responsible for a different component. The model can visualize the pattern of time‐varying genetic effects for individual components and their impacts on composite traits. The dissection model was used to map two composite traits, stemwood volume growth decomposed into its stem height, stem diameter and stem form components for Euramerican poplar adult trees, and total lateral root length constituted by its average lateral root length and lateral root number components for Euphrates poplar seedlings. We found the pattern of how QTLs for different components contribute to phenotypic variation in composite traits. The detailed understanding of the genetic machineries of composite traits will not only help in the design of molecular breeding in plants and animals, but also shed light on the evolutionary processes of quantitative traits under natural selection.  相似文献   

20.
Evolution is a fundamentally population level process in which variation, drift and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time using models like Brownian motion, stabilizing selection (Ornstein–Uhlenbeck) and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are homogeneous. Spatial processes such as dispersal, gene flow and geographical range changes can produce patterns of trait evolution that do not fit the expectations of standard models, even when evolution at the local‐population level is governed by drift or a typical OU model of selection. The basic properties of population level processes (variation, drift, selection and population size) are reviewed and the relationship between their spatial and temporal dynamics is discussed. Typical evolutionary models used in palaeontology incorporate the temporal component of these dynamics, but not the spatial. Range expansions and contractions introduce rate variability into drift processes, range expansion under a drift model can drive directional change in trait evolution, and spatial selection gradients can create spatial variation in traits that can produce long‐term directional trends and punctuation events depending on the balance between selection strength, gene flow, extirpation probability and model of speciation. Using computational modelling that spatial processes can create evolutionary outcomes that depart from basic population‐level notions from these standard macroevolutionary models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号