首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid development of foraging ability is critical for phocids. In northern elephant seals Mirounga angustirostris , juvenile survivorship is low compared with adults and foraging difficulties are potentially associated with increased mortality. At Año Nuevo, California, foraging behavior of nine juvenile females during their third foraging migration and five juvenile females on their fourth foraging migration were documented using a variety of commercially available and custom time depth recorders. Foraging success, diving ability, time at depth, bouts of behavior and body composition changes were compared between trips to sea. There were no significant differences in foraging success measured as mass gain between the third and fourth trips to sea. There were differences in how energy was deposited between lean and adipose tissue compartments. Diving ability developed between trips to sea, reflected in significant increases in depth, dive duration and bottom time. Development also occurred within trips to sea. Depth, dive duration and bottom time increased with time at sea. Aerobic capacity appears to increase between the third and fourth trip, with a significantly increased percentage of total time submerged and a significantly lower diving rate. All juveniles on the fourth trip and four out of nine juveniles on the third trip followed marked diel patterns, foraging deep during the day and shallow at night. Like adults, juveniles appeared to stay primarily aerobic with surface intervals independent of dive durations. These results confirm that female juvenile northern elephant seals undergo important developmental changes in foraging behavior between the third and fourth trip, but these changes do not significantly impact foraging success.  相似文献   

2.
Overall, large animals dive longer and deeper than small animals; however, after the difference in body size is taken into account, smaller divers often tend to make relatively longer dives. Neither physiological nor theoretical explanations have been provided for this paradox. This paper develops an optimal foraging diving model to demonstrate the effect of body size on diving behaviour, and discusses optimal diving behaviour in relation to body size. The general features of the results are: (1) smaller divers should rely more heavily on anaerobic respiration, (2) larger divers should not always make longer dives than smaller divers, and (3) an optimal body size exists for each diving depth. These results explain the relatively greater diving ability observed in smaller divers, and suggest that if the vertical distribution of prey in the water column is patchy, there is opportunity for a population of diving animals to occupy habitat niches related to body size.  相似文献   

3.
Optimal choice of foraging depth in divers   总被引:4,自引:0,他引:4  
  相似文献   

4.
While foraging models of terrestrial mammals are concerned primarily with optimizing time/energy budgets, models of foraging behaviour in marine mammals have been primarily concerned with physiological constraints. This has historically centred on calculations of aerobic dive limits. However, other physiological limits are key to forming foraging behaviour, including digestive limitations to food intake and thermoregulation. The ability of an animal to consume sufficient prey to meet its energy requirements is partly determined by its ability to acquire prey (limited by available foraging time, diving capabilities and thermoregulatory costs) and process that prey (limited by maximum digestion capacity and the time devoted to digestion). Failure to consume sufficient prey will have feedback effects on foraging, thermoregulation and digestive capacity through several interacting avenues. Energy deficits will be met through catabolism of tissues, principally the hypodermal lipid layer. Depletion of this blubber layer can affect both buoyancy and gait, increasing the costs and decreasing the efficiency of subsequent foraging attempts. Depletion of the insulative blubber layer may also increase thermoregulatory costs, which will decrease the foraging abilities through higher metabolic overheads. Thus, an energy deficit may lead to a downward spiral of increased tissue catabolism to pay for increased energy costs. Conversely, the heat generated through digestion and foraging activity may help to offset thermoregulatory costs. Finally, the circulatory demands of diving, thermoregulation and digestion may be mutually incompatible. This may force animals to alter time budgets to balance these exclusive demands. Analysis of these interacting processes will lead to a greater understanding of the physiological constraints within which the foraging behaviour must operate.  相似文献   

5.
The foraging strategy of many animals is thought to be determined by their past experiences. However, few empirical studies have investigated whether this is true in diving animals. We recorded three-dimensional movements and mouth-opening events from three Antarctic fur seals during their foraging trips to examine how they adapt their behaviour based on past experience—continuing to search for prey in the same area or moving to search in a different place. Each dive cycle was divided into a transit phase and a feeding phase. The linear horizontal distance travelled after feeding phases in each dive was affected by the mouth-opening rate during the previous 244 s, which typically covered two to three dive cycles. The linear distance travelled tended to be shorter when the mouth-opening rate in the previous 244 s was higher, i.e. seals tended to stay in the same areas with high prey-encounter rates. These results indicate that Antarctic fur seals follow decision-making strategies based on the past foraging experience over time periods longer than the immediately preceding dive.  相似文献   

6.
The foraging behavior of a predator species is thought to bethe cause of short-term apparent competition among those preyspecies that share the predator. Short-term apparent competitionis the negative indirect effect that one prey species has onanother prey species via its effects on predator foraging behavior.In theory, the density-dependent foraging behavior of granivorousrodents and their preference for certain seeds are capable ofinducing short-term apparent competition among seed species.In this study, I examined the foraging behavior of two heteromyidrodent species (family Heteromyidae), Merriam's kangaroo rats(Dipodomys merriami) and little pocket mice (Perognathus longimembris).In one experiment I tested the preferences of both rodent speciesfor the seeds of eight plant species. Both rodent species exhibiteddistinct but variable preferences for some seeds and avoidanceof others. However, the differences in preference appearedto have only an occasional effect on the strength of the short-termapparent competition detected in a field experiment. In anotherexperiment, I found that captive individuals of both rodentspecies had approximately equal foraging effort (i.e., timespent foraging) in patches that contained a highly preferredseed type (Oryzopsis hymenoides) regardless of seed densityand the presence of a less preferred seed type (Astragalus cicer)in the patches. The rodents also harvested a large proportionof O. hymenoides seeds regardless of initial seed density;this precluded a negative indirect effect of A. cicer on O.hymenoides. But there was a negative indirect effect of O.hymenoides on A. cicer caused by rodents having a lower foragingeffort in patches that only contained A. cicer seeds than inpatches that contained A. cicer and O. hymenoides seeds. Theindirect interaction between O. hymenoides and A. cicer thusrepresented a case of short-term apparent competition thatwas non-reciprocal. Most importantly, it was caused by theforaging behavior of the rodents.  相似文献   

7.
陈璇  胡福良 《昆虫知识》2009,46(3):490-494
蜜蜂Apisspp.是一种社会性昆虫。社会性昆虫在对它们群体自身数量和巢穴环境的调节方面表现出明显的稳态特点,Emerson将这种稳态调节称为社会性稳态。蜂群中花粉的储存量就具有稳态的特点。蜂群的花粉采集行为是由蜂群对花粉的需要决定的。关于蜜蜂花粉采集行为的调控机制,目前的研究主要集中于是哪些信息以及蜂群是如何识别这些信息从而调控其采粉行为,主要形成了直接识别和间接识别2种假说。对这2种假说进行综述。  相似文献   

8.
李莉  刘芳  李文峰  苏松坤 《昆虫知识》2012,49(5):1354-1359
蜜蜂的采集行为是蜜蜂众多社会行为中一种较复杂的行为,涉及信息评估、信息传递、学习记忆及能量代谢等不同的行为过程。研究蜜蜂采集及信息交流系统的分子机制,不仅利于蜜蜂的理论研究和蜂产业的发展,还为人类语言及信息交流系统的研究提供借鉴。本文从行为、感觉基础及分子机制等不同研究层面,综述了近年来对蜜蜂采集及信息传递行为的研究进展,并提出了研究设想,以期为深入研究蜜蜂的采集行为及其信息传递行为的分子机制提供参考。  相似文献   

9.
Body insulation is critically important for diving marine endotherms. However,cormorants have a wettable plumage, which leads to poor insulation. Despitethis, these birds are apparently highly successful predatorsin most aquatic ecosystems. We studied the theoretical influenceof water temperature, dive depth, foraging techniques, and preyavailability on the energetic costs of diving, prey search time,daily food intake, and survival in foraging, nonbreeding greatcormorants (Phalacrocorax carbo). Our model was based on fieldmeasurements and on data taken from the literature. Water temperatureand dive depth influenced diving costs drastically, with predicted increasesof up to 250% and 258% in males and females, respectively. Changes inwater temperature and depth conditions may lead to an increaseof daily food intake of 500-800 g in males and 440-780 g infemales. However, the model predicts that cormorant foragingparameters are most strongly influenced by prey availability,so that even limited reduction in prey density makes birds unableto balance energy needs and may thus limit their influence onprey stocks. We discuss the ramifications of these results withregard to foraging strategies, dispersal, population dynamics,and intraspecific competition in this avian predator and pointout the importance of this model species for our understandingof foraging energetics in diving endotherms.  相似文献   

10.
Abstract. 1. Adult staphylinid beetles Thinopinus pictus LeC. are noct turnal predators of sand beach amphipods, Orchestoidea califomiana (Brandt). I made continuous observations of Thinopinus near the drift patches on which amphipods feed.
2. Thinopinus alternated between active and ambush foraging modes.
3. Thinopinus had greater attack rates and captured smaller amphipods while in active foraging mode.
4. Thinopinus attacked 0.147 amphipods/min, and captured 9.1% of the amphipods attacked. The attack rate on amphipods increased with the proportion of time spent by Thinopinus in active mode.
5. Thinopinus remained longer near types of drift patches which were more attractive to amphipods.  相似文献   

11.
Varying assemblages of three crustaceans and their behavioral interactions were studied in Rice Cave during eight visits over a two year period. The assemblages of crustaceans observed were seen to depend primarily on periodic invasions into the cave byGammarus troglophilus, low resource levels, habitat preference, the sensitivity ofCaecidotea stygia to disturbance, and subterranean adaptation by the troglobites.Both the troglophilG. troglophilus and the troglobite,C. stygia preferred mud and gravel bottomed pools. The more active and aggressiveG. troglopholus when at high densities eliminatedC. stygia from preferred habitat and baited food placed in it.Bactrurus brachycaudus, a troglobite, preferred riffles, but was able to compete for baited food withG. troglophilus by virtue of its larger size and similar behaviors. When onlyC. stygia was present at baited sites access to food was size-related with a rotation of large and small individuals on and off the bait occurring.  相似文献   

12.
I address the selection of plants with different characteristics by herbivores of different body sizes by incorporating allometric relationships for herbivore foraging into optimal foraging models developed for herbivores. Herbivores may use two criteria in maximizing their nutritional intake when confronted with a range of food resources: a minimum digestibility and a minimum cropping rate. Minimum digestibility should depend on plant chemical characteristics and minimum cropping rate should depend on the density of plant items and their size (mass). If herbivores do select for these plant characteristics, then herbivores of different body sizes should select different ranges of these characteristics due to allometric relationships in digestive physiology, cropping ability and nutritional demands. This selectivity follows a regular pattern such that a herbivore of each body size can exclusively utilize some plants, while it must share other plants with herbivores of other body sizes. I empirically test this hypothesis of herbivore diet selectivity and the pattern of resource use that it produces in the field and experimentally. The findings have important implications for competition among herbivores and their population and community ecology. Furthermore, the results may have general applicability to other types of foragers, with general implications for how biodiversity is influenced.  相似文献   

13.
14.
15.
1. Identifying the spatial scales at which top marine predators forage is important for understanding oceanic ecosystems. Several methods quantify how individuals concentrate their search effort along a given path. Among these, First-Passage Time (FPT) analysis is particularly useful to identify transitions in movement patterns (e.g. between searching and feeding). This method has mainly been applied to terrestrial animals or flying seabirds that have little or no vertical component to their foraging, so we examined the differences between classic FPT and a modification of this approach using the time spent at the bottom of a dive for characterizing the foraging activity of a diving predator: the southern elephant seal. 2. Satellite relayed data loggers were deployed on 20 individuals during three successive summers at the Kerguelen Islands, providing a total of 72 978 dives from eight juvenile males and nine adult females. 3. Spatial scales identified using the time spent at the bottom of a dive ( = 68.2 +/- 42.1 km) were smaller than those obtained by the classic FPT analysis ( = 104.7 +/- 67.3 km). Moreover, foraging areas identified using the new approach clearly overlapped areas where individuals increased their body condition, indicating that it accurately reflected the foraging activity of the seals. 4. These results suggest that incorporating the vertical dimension into FPT provides a different result to the surface path alone. Close to the Antarctic continent, within the pack-ice, sinuosity of the path could be explained by a high sea-ice concentration (restricting elephant seal movements), and was not necessarily related to foraging activity. 5. Our approach distinguished between actual foraging activity and changes in behaviour induced by the physical environment like sea ice, and could be applied to other diving predators. Inclusion of diving parameters appears to be essential to identify the spatial scale of foraging areas of diving animals.  相似文献   

16.
The behavior of 12 orangutans (three adult males, two adult females, two subadult males, three adolescent males, and two infant males) was observed on a 450-m2 island at the Singapore Zoological Gardens (SZG). Male orangutans (6–18 years old) showed less social and solitary play as they aged; adults (over 16 years old) were not seen to play. As they grew older males increasingly spent less time making physical contact, but the amount of time they spent in proximity (within arm's length) to others increased. Adult females regularly played with other group members. Contact, allogrooming, and social play showed nonrandom relationships between individuals. Adult females showed the most allogrooming and contact, adolescent and subadult males the most play. There was no obvious dominance hierarchy. One adult male spent about 10% of his time walking around the perimeter of the island. One-year-old infants rarely interacted with other individuals apart from their own and the other infant's mother. While orangutans lead relatively solitary lives in nature, it was concluded that the opportunities for social contact and play provided by the SZG orangutan island were beneficial to this species in captivity. Opportunities for social interaction provided the animals with a means of increasing the stimulus component of their environment, thus compensating for the inevitable restriction of complexity and unpredictability as compared with the wild state.  相似文献   

17.
A trade-off between scale and precision in resource foraging   总被引:21,自引:0,他引:21  
Summary There is widespread uncertainty about the nature and role of morphological plasticity in resource competition in plant communities. We have assayed the foraging characteristics of leaf canopies and root systems of eight herbaceous plants of contrasted ecology using new techniques to create controlled patchiness in light and mineral nutrient supply. The results are compared with those of a conventional competition experiment. Measurements of dry matter partitioning and growth in patchy conditions indicate a consistent positive association between the foraging characteristics of roots and shoots, supporting the hypothesis of strong interdependence of competitive abilities for light and mineral nutrients. Differences are identified in the abilities of dominant and subordinate plants to forage on coarse and fine scalcs. It is suggested that a trade-off exists in the scale (“high” in dominants) and precision (high in subordinates) with which resources are intercepted and that this trade-off contributes to diversity in communities of competing plants.  相似文献   

18.
19.
Summary Foraging efficiency and intraspecific competition were compared between wild adult and immature rooks Corvus frugilegus with respect to flock size. Behavioural time budgets, and observations of prey selection and prey energetic values revealed that adult rooks in large flocks (> 50 individuals) consumed smaller, less profitable prey, but allocated more time to feeding and fed at a faster rate and with greater success than adults in small flocks. By contrast, immature rooks in flocks of more than 30 individuals allocated proportionally less time to feeding, fed at a lower rate and fed with no increase in success rate than when foraging in smaller flocks. Agonistic encounters and the avoidance of adults by immature rooks appeared responsible for such inefficient foraging. Hence immature rooks showed a preference for smaller flocks (< 50 individuals) with low adult: immature ratios while adults preferred larger flocks (> 50 individuals). We discuss the possible influence of competitive disadvantages on immature rook distribution, flock composition and post-natal dispersal.  相似文献   

20.
Colonies of the African stink ant Paltothyreus tarsatuslocated in the forest have nests with shorter horizontal galleries and a smaller total foraging surface than colonies located in open areas. Each solitary worker specializes on the same central or peripheral hunting zone but she does not specialize on a particular sector during group-retrieving. The search for prey is characterized by a wandering walk with spatial parameters varying in two ways. Capture of a termite releases a path characterized by sinuosity and a decrease in speed of movement. In contrast, a failure in the course of an attempted capture releases an increase in both sinuosity and speed of movement corresponding to a socalled reserve behavior. Each worker shortens her retrieving trip in comparison with her search trip and the straightness of the homing paths depends on the size and shape of the prey. Our data show that behavioral flexibility at the individual level in P. tarsatusis important in determining spatial foraging strategy at the colony level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号