首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To address the role of insect herbivores in adaptation of plant populations and the persistence of selection through succession, we manipulated herbivory in a long‐term field experiment. We suppressed insects in half of 16 plots over nine years and examined the genotypic structure and chemical defense of common dandelion (Taraxacum officinale), a naturally colonizing perennial apomictic plant. Insect suppression doubled dandelion abundance in the first few years, but had negligible effects thereafter. Using microsatellite DNA markers, we genotyped >2500 plants and demonstrate that insect suppression altered the genotypic composition of plots in both sampling years. Phenotypic and genotypic estimates of defensive terpenes and phenolics from the field plots allowed us to infer phenotypic plasticity and the response of dandelion populations to insect‐mediated natural selection. The effects of insect suppression on plant chemistry were, indeed, driven both by plasticity and plant genotypic identity. In particular, di‐phenolic inositol esters were more abundant in plots exposed to herbivory (due to the genotypic composition of the plots) and were also induced in response to herbivory. This field experiment thus demonstrates evolutionary sorting of plant genotypes in response to insect herbivores that was in same direction as the plastic defensive response within genotypes.  相似文献   

2.
Evidence that chemical changes in plants following insect feeding can lead to reduced grazing levels, enhanced insect movement and selective leaf avoidance is briefly reviewed. A simple model is constructed in which changes in damaged and/or adjacent leaves lead to effects on herbivore performance. The model reveals that as the density of herbivore larvae/plant increases from one to twenty-four, wound-induced changes in the leaves reduce larval survival by up to 40%, treble the number of movements of the larvae and increase their development time by c. 10%. The distribution of grazing between leaves changes in the direction of more leaves with lower grazing levels but overall grazing levels are not greatly affected by the above changes in larval performance. The model's output is discussed in relation to recent views concerning the relative roles of intra-specific competition and predation in regulating insect herbivore numbers.  相似文献   

3.
4.
This note suggests an additional interpretation of analyses of north Queensland tidal forest vegetation recently presented by Bunt & Williams (1980a). They separated 30 species associations defined by various combinations of 11 defining species, and showed that these associations do not form a single invariant zonal sequence, as implied previously by Macnae (1966). Their results do indicate, however, that individual mangrove species are characteristically associated with different sections of the overall tidal range. This does not contradict their conclusions but rather places a different emphasis on their results.  相似文献   

5.
6.
Insect herbivory on C3 and C4 grasses   总被引:2,自引:0,他引:2  
Summary This study tested the hypothesis that grasses with the C4 photosynthetic pathway are avoided as a food source by insect herbivores in natural communities. Insects were sampled from ten pairs of C3–C4 grasses and their distributions analyzed by paired comparisons tests. Results showed no statistically significant differences in herbivore utilization of C3–C4 species. However, there was a trend towards heavier utilization of C3 species when means for both plant groups were compared. In particular, Homoptera and Diptera showed heavier usage of C3 plants. Significant correlations between insect abundances and plant protein levels suggest that herbivores respond to the higher protein content of C3 grasses. 13C values for six of the most common grasshopper species in the study area indicated that three species fed on C3 plants, two species fed on C4 plants, and one species consumed a mixture of C3 and C4 tissue.Welder Wildlife Refuge Contribution Number 213  相似文献   

7.
8.
浙江天童常绿阔叶林中11种常绿乔灌木叶片虫食状分析   总被引:3,自引:0,他引:3  
为探讨昆虫对植物叶片的取食行为和伤害方式,作者选择浙江天童常绿阔叶林内的11种常绿乔灌木为对象,对叶片虫食状类型和格局进行分析。结果如下:(1)共发现16种虫食状类型,每种植物叶片虫食状类型数在10–13种之间,每种虫食状出现频率在0.5–28.7%之间。缘食状出现频率最高(28.7%),虫瘿和泡状出现频率最低(0.5%)。(2)叶片虫食状分布格局可分为3种类型,即一种虫食状占绝对优势的单优格局,如马银花(Rhododendronovatum)和檵木(Loropetalumchinense);两种虫食状(缘食状和顶食状)共占优势的双优格局,仅有木荷(Schimasu-perba);3种及3种以上虫食状占优势的多优格局(其余8种植物)。(3)叶片虫食状多样性指数变化在1.57–2.23之间,最高为苦槠(Castanopsissclerophylla),最低为马银花;乔木的多样性指数(2.040)高于灌木(1.882),优势种多样性指数高于伴生种,但差异均不显著;多样性指数反映了虫食状类型和出现频率的综合差异。(4)16种虫食状类型中有8对显著正相关,4对显著负相关,可能反映出不同类型昆虫取食植物的趋同和差异。  相似文献   

9.
A study of potentially zoonotic infections was carried out on 351 rodents trapped in north-eastern Queensland. Their ecosystems included towns, agricultural and livestock areas, wookland and rainforest. Nine serotypes of salmonellae were obtained from asymptomatic carries in predominantly settled locations. Two strains of Ps. pseudomallei occurred in rainforest near Innisfail and one on a cattle property adjacent to Townsville. Ps. aeruginosa caused bronchopneumonia in one animal from Townsville harbour. Ifection by leptospirae of six serogroups and seven serovars were identified by serological or cultural examinations. Enzootic foci occurred on the Mount Spec rainforest where celledoni and australis were being excreted by rats adjacent to the Paluma dam system. In addition to the scrub typhus locations at Rocky Creek, Atherton Tableland and Bullocky Creek, near Ingham, which were confirmed, a new focus of infection by R. tsutsugamushi was identified at El Arish near Tully. Water rat (H. chrysogaster) at Townsville harbour constituted a reservoir of toxoplasmosis. In addition to the known human pathogenic helminths H. nana and H. diminuta, localized foci of hookworms (Ancylostoma spp.) were found. Histological evidence of cytomegalic disease of the salivary glands or kidneys was a common finding.  相似文献   

10.
Ilka C. Feller 《Oikos》2002,97(2):167-176
The roles wood-boring insects play in modifying mangrove ecosystems were examined on small, offshore mangrove islands in Belize. Several species of xylem- and phloem-feeding woodborers consume the wood of living mangrove trees. By girdling, pruning, and hollowing, woodborers killed over 50% of the Rhizophora mangle canopy in experimental plots arrayed across a tidal-elevation gradient. In contrast, leaf-feeding herbivores removed less than 6% of the canopy. In the plots, stem girdlers killed over three branches per tree. The patterns of herbivory by three functional feeding groups were heterogeneous and did not vary consistently with tidal elevation. Because R. mangle lacks viable axillary buds or the ability to produce epicormic shoots to replace pruned branches, the canopy architecture was significantly modified by this damage. The branches that were pruned by stem girdlers created numerous small holes or gaps in the mangrove canopy. Shoot growth and flowering increased in R. mangle trees with 50% of their branches experimentally girdled. Because branches and twigs attacked by woodborers lost their leaves prematurely as greenfall, the quantity and quality of leaf litter were altered when a leaf-bearing branch was girdled or hollowed. These changes suggest that wood-boring insects also significantly affect internal and external nutrient cycling processes in mangrove ecosystems.  相似文献   

11.
Wetlands Ecology and Management - Fluctuating asymmetry (FA), a widely used measure of developmental instability in plants and animals, which describes random differences in size and/or shape...  相似文献   

12.
BACKGROUND: Herbivory reduces leaf area, disrupts the function of leaves, and ultimately alters yield and productivity. Herbivore damage to foliage typically is assessed in the field by measuring the amount of leaf tissue removed and disrupted. This approach assumes the remaining tissues are unaltered, and plant photosynthesis and water balance function normally. However, recent application of thermal and fluorescent imaging technologies revealed that alterations to photosynthesis and transpiration propagate into remaining undamaged leaf tissue. SCOPE AND CONCLUSIONS: This review briefly examines the indirect effects of herbivory on photosynthesis, measured by gas exchange or chlorophyll fluorescence, and identifies four mechanisms contributing to the indirect suppression of photosynthesis in remaining leaf tissues: severed vasculature, altered sink demand, defence-induced autotoxicity, and defence-induced down-regulation of photosynthesis. We review the chlorophyll fluorescence and thermal imaging techniques used to gather layers of spatial data and discuss methods for compiling these layers to achieve greater insight into mechanisms contributing to the indirect suppression of photosynthesis. We also elaborate on a few herbivore-induced gene-regulating mechanisms which modulate photosynthesis and discuss the difficult nature of measuring spatial heterogeneity when combining fluorescence imaging and gas exchange technology. Although few studies have characterized herbivore-induced indirect effects on photosynthesis at the leaf level, an emerging literature suggests that the loss of photosynthetic capacity following herbivory may be greater than direct loss of photosynthetic tissues. Depending on the damage guild, ignoring the indirect suppression of photosynthesis by arthropods and other organisms may lead to an underestimate of their physiological and ecological impacts.  相似文献   

13.
This, the first study on herbivory in a woodland eucalypt in Australia, produced an estimate of annual foliage loss from Eucalyptus blakelyi to herbivorous insects of 40%. Further evidence on abscission of damaged foliage showed that this was an underestimate, a more accurate figure being closer to 70% annually.  相似文献   

14.
Interactions between terrestrial arthropods and plants play a significant role in terrestrial ecosystems. Research on plant–insect interactions through geologic time provides valuable information for studying insect behavior and plant structure, understanding their coevolution, as well as analyzing climate change. In this paper, we choose fossil ginkgoalean and bennettitalean leaves as the plant hosts to study insect herbivory in the Middle Jurassic Daohugou area. Seven damage types of four functional feeding groups have been identified. Of the four functional feeding groups, margin feeding is the most common, indicating an abundance of insects with chewing mouthparts. Ginkgoalean leaves, probably because of their chemical defense, suffered less severe insect damage than bennettitalean leaves. Physical defense has also been observed in various genera of the bennettitalean leaves. Significantly, leaves of Anomozamites had a shaggy indumentum on the abaxial leaf surface and long stiff hairs along the rachis protecting them from insect herbivory. Our results indicate that the climate in the Middle Jurassic of the Daohugou area was relatively warm and humid. This work contributes to the study of plant–insect coevolution in the Daohugou Biota and provides more proxy data for understanding the Middle Jurassic paleoclimate and paleoenvironment in Daohugou area.  相似文献   

15.
《Current biology : CB》2023,33(4):720-726.e2
  1. Download : Download high-res image (485KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
Human-induced increases in atmospheric CO2 concentration have the potential to alter the chemical composition of plant tissue, and thereby affect the amount of tissue consumed by herbivorous arthropods. At the Duke Forest free-air concentration enrichment (FACE) facility in North Carolina (FACTS–1 research facility), we measured the amount of leaf tissue damaged by insects and other herbivorous arthropods during two growing seasons in a deciduous forest understory continuously exposed to ambient (360 l l–1) and elevated (~560 µl l–1) CO2 conditions. In 1999, there was a significant interaction between CO2 and species such that winged elm (Ulmus alata) showed lower herbivory in elevated CO2 plots, whereas red maple (Acer rubra) and sweetgum (Liquidambar styraciflua) did not. In 2000, our results did not achieve statistical significance but the magnitude of the result was consistent with the 1999 results. In 1999 and 2000, we found a decline (10–46%) in community-level herbivory in elevated CO2 plots driven primarily by reductions in herbivory on elm. The major contribution to total leaf damage was from missing tissue (66% of the damaged tissue), with galls, skeletonized, and discolored tissue making smaller contributions. It is unclear whether the decline in leaf damage is a result of altered insect populations, altered feeding, or a combination. We were not able to quantify insect populations, and our measurements did not resolve an effect of elevated CO2 on leaf chemical composition (total nitrogen, carbon, C/N, sugars, phenolics, starch). Despite predictions from a large number of single-species studies that herbivory may increase under elevated CO2, we have found a decrease in herbivory in a naturally established forest understory exposed to a full suite of insect herbivores and their predators.  相似文献   

18.
Summary Some shallow habitats that surround mangrove islands exhibit abruptly discontinuous macrophyte boundaries; in other regions, plant distributional patterns are less defined. Where distinct boundaries do occur, fleshy algae predominate on the roots of the red mangrove, Rhizophora mangle, which do not contact the bottom sediments (hanging roots), while calcifying algae dominate on the substratum-penetrating roots and banks (=embedded-root habitat) surrounding the mangrove thickets. Considerable natural-history and floristic information reveals that the fleshy hanging-root species are not specialists, for that type of habitat. Experimental transplants showed that on banks and embedded roots where there typically are abundant macroherbivores (particularly sea urchins), most fleshy algae are eliminated.The dominants of the hanging-root habitat (e.g, Acanthophora spicifera, Spyridia filamentosa, Caulerpa racemosa var. Occidentalis) are 6–20 times more susceptible to herbivores than the dominants of the embedded-root habitat (e.g., Halimeda opuntia f. triloba, H. monile). Consequently, we suggest the former are relegated to the spatial refugia from herbivores (=non-coexistence escapes) provided by the hanging roots. Factors associated with these palatability differences include higher average calorific values (6.5 times) of the fleshy hanging-root dominants, greater proportions of organic content (2.6 times) and the general absence of calcification. The dominants of the embedded-root habitat show reduced edibility as a probable consequence of low calorific values, heavy calcification and potential herbivore-detering secondary metabolites. Correlative evidence and preliminary experimental results tentatively indicate that, in the absence of macroherbivores, the hanging-root dominants, which exhibit production rates 4.7 times greater than the dominants of the embedded-root habitat, are better competitors for space.We suggest that variations in herbivory are responsible, in part, for maintaining greater algal diversity in mangrove systems. At a study site with abundant sea urchins, five algal species were found only in the embedded-root habitat three species were confined to the hanging roots, while three others occurred in both. At an urchin-free site, no macrophytes were found only on embedded-root substrata, while one (in trace amounts) was found only on hanging-root habitat and eight occurred in both. We predict that in the absence of herbivores, the species assemblage characteristic of the hanging-roots would exclude many of the dominants from the embedded-root habitat.  相似文献   

19.
Abstract Foliar insect damage levels on woody sprouts in the ground layer of two tropical eucalypt forest communities on Melville Island were between 7.8 and 43.2%. Of eight common tree species, Eucalyptus confertiflora was damaged most by insects and Buchanania obovata and Terminalia ferdinandiana the least. Seasonal trends in insect damage were not consistent between plant species and were not always consistent between vegetation types for a particular plant species. The results of this study are not consistent with hypotheses suggesting that insect grazing is a critical determinant of tree species dominance or woody sprout dormancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号