首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homozygous mt?/mt? diploid clones of the Closterium ehrenbergii Menegh. ex Ralfs species complex were obtained by hypertonic treatment from minus vegetative cells, and mating type segregation ratios in the F1 progeny of “triploid” zygospores between wild type mt+ haploid and mt?/mt? homozygous diploui were analyzed. The ratio of plus to minus individuals was 1:4.8, and the ratio of the pairs of opposite mating types to those of minus mating type was 1:2.1. The results clearly show that mt? is dominant to mt+ and that the mating type inheritance in these zygospores follows the triploid-like pattern. The validity of our assumption that the two mating types are determined by one genetic factor (mt? allele dominant) was confirmed in B1 progeny analyses as well. The results suggest that this sex determining mechanism is working effectively in the C. ehrenbergii species complex, in which several biological species have evolved through polyploidization.  相似文献   

2.
Morishima K  Yoshikawa H  Arai K 《Heredity》2008,100(6):581-586
Triploid loaches Misgurnus anguillicaudatus are derived from unreduced diploid gametes produced by an asexual clonal lineage that normally undergoes gynogenetic reproduction. Here, we have investigated the reproductive system of two types of triploids: the first type carried maternally inherited clonal diploid genomes and a paternally inherited haploid genome from the same population; the second type had the same clonal diploid genomes but a haploid genome from another, genetically divergent population. The germinal vesicles of oocytes from triploid females (3n=75) contained only 25 bivalents, that is, 50 chromosomes. Flow cytometry revealed that the majority of the progeny resulting from fertilization of eggs from triploid females with normal haploid sperm were diploid. This indicates that triploid females mainly produced haploid eggs. Microsatellite analyses of the diploid progeny of triploid females showed that one allele of the clonal genotype was not transmitted to haploid eggs. Moreover, the identity of the eliminated allele differed between the two types of triploids. Our results demonstrate that there is preferential pairing of homologous chromosomes as well as the elimination of unmatched chromosomes in the course of haploid egg formation, that is, meiotic hybridogenesis. Two distinct genomes in the clone suggest its hybrid origin.  相似文献   

3.
Sexual isolation between Groups A and B of Closterium ehrenbergii, two closely related species, was studied by a multiple-choice mating method, as well as the nochoice mating method which has been used in previous work on microalgae. Time lapse photomicrographs and the difference in cell shape and size between the two mating groups allowed identification of a given cell in the mixture as either Group A or B, even when certain morphological changes occurred during the several day culture required for sexual induction. When plus and minus mating types of Group A were mixed with those of Group B (multiplechoice mating), no intergroup hybrid zygospores were formed. However, many intragroup zygospores of either Group A or B were formed. When one plus strain of Group A was mixed with one minus strain of Group B or when one plus strain of Group B was mixed with one minus strain of Group A (no-choice mating), intergroup sexual interactions took place resulting in a small number of hybrid zygospores; however, the process took much longer than intragroup sexual interactions. It was also shown that cell size difference itself hardly affects sexual interactions between haploid and autodiploid strains of Group A. It is suggested that sexual isolation between Groups A and B would be complete in nature, although they may interact sexually in the laboratory.  相似文献   

4.
In a haplontic green alga, mating group A of the Closterium ehrenbergii Meneghini ex Ralfs species complex, viability of meiotic progeny was studied by isolating two gone cells from a single germinating zygospore. In F1 progeny of a cross between mating-type plus M-16-4a and mating-type minus M-16-4b, studied in six independent experiments, percentage survivals varied little from 86 to 96 with a mean of 93 ± 1.4 SE. In F2 progenies of crosses among eight mating-type plus and eight mating-type minus F1 clones of the M-16-4a · M-16-4b cross, percentage survival varied considerably from 24 to 100, with a mean of 70.8 ± 2.2. In B1 progenies of the above eight mating-type plus F1 clones, survival values were significantly different between backcrosses to the recurrent M-16-4b (range = 32–83, mean ± SE = 58.3 ± 6.8) and backcrosses to a genetically unrelated mating-type minus, R-13-20, (85–97, 92 ± 1.6). Also in B1 progenies of the above mating-type minus F1 clones, survival values were significantly different between backcrosses to the recurrent M-16-4a (56–90, 68.3 ± 4,4) and backcrosses to a genetically unrelated mating-type plus, R-13-131 (78–93, 86.1 ± 1.6). Clearly, viabilities of meiotic progeny differed considerably between outbreedings (M-16-4a × M-16-4b, and F, clones × R-13-20 or R-13-131) and inbreedings (F2 and F1 clones × M-16-4a, or M-16-4b). These data suggest the presence of hidden deleterious genetic factors that may reduce viability of zygospore progeny if inbred between a pair of wild-type strains from the normally outbreeding mating group A of the C. ehrenbergii species complex.  相似文献   

5.
A. Davies  G. Jenkins  H. Rees 《Genetica》1990,82(2):103-110
The chromosomes of the two closely related diploid species, Gibasis consobrina and G. karwinskyana (Commelinaceae; 2n=2x=10), are morphologically alike, yet form few chiasmate associations at metaphase I in the f1 hybrid. During meiotic prophase, however, synaptonemal complexes join the majority of the chromosomes of the complement in complex multiple pairing configurations. The F1 hybrid between different tetraploid genotypes of the same two species similarly forms multivalents during meiotic prophase, which are subsequently eliminated in favour of strictly homologous bivalents before metaphase I. One quadrivalent comprising interchange chromosomes inherited from one of the parents, usually persists to first metaphase. Evidently the resolution of multivalents to bivalents at first metaphase, which accounts for diploidisation, is not attributable to the elimination of multivalents per se, but of multivalents comprising chromosomes of limited homology.  相似文献   

6.
Gametes of Volvulina steinii bear near-apical mating papillae. Zygospore germination yields a single biflagellate cell that develops into a colony xuhose asexual progeny are all of the same mating type. Backcrossing of clones of progeny indicated a 1 :1 ratio of mating types among the progeny. Of 20 clones from a number of localities, none was homothallic and 3 showed no matins: reaction. Mating reactions of clones crossed in all possible combinations indicated the presence of 2 sexually isolated groups of clones producing smooth-walled zygospores and 1 group that produced spiny-walled zygospores. In the latter group weak and nonreciprocal mating reactions occurred in some clone combinations. Failure of germination of spiny-walled zygospores from certain crosses suggests further subdivision into genetically isolated groups.  相似文献   

7.
A strain of Chlamydomonas reinhardtii has been investigated which, when mated with known wild-types, produces very few viable germination products and transmits its Mendelian markers to more than half of those products. Cytogenetic observations, fluorometric measurements of DNA and genetic data all suggest that the strain, d mt-ery-M3a sr-u-1 is a stable homozygous diploid. This strain has twice as many nuclear chromatin bodies at metaphase and twice as much DNA as its haploid progenitor, and the phenotypes of its meiotic progeny are consistent with predictions based on triploid meiosis. Data from crosses involving d mt-ery-M3a sr-u-1 and from crosses involving hybrid diploids indicate that the frequency of second division segregation increases in triploid zygotes and that mitotic segregation following triploid meiosis is a frequent event which may more often result from mitotic recombination than from chromosome loss.  相似文献   

8.
An F1 hybrid (n=4x=28) between the tetraploid species Festuca arundinacea var. glaucescens (GGG′G′) and a synthetic tetraploid Lolium multiflorum (LmLmLmLm) was backcrossed to diploid L. multiflorum to produce triploid (2n=3x=21) BC1 hybrids (LmLmG). At metaphase I of meiosis the triploids had a preponderance of ring bivalents and univalents with some linear and frying-pan trivalents. Genomic in situ hybridisation (GISH) differentiated the Festuca chromosomes from Lolium and revealed that the bivalents were exclusively between Lolium homologues, while the univalents were Festuca. Despite the limited amount of homoeologous chiasmata pairing in the triploids, some recombinant chromosomes were recovered in the second backcross when the hybrids were further crossed to diploid L. multiflorum. The progeny from the second backcross was predominantly diploid. Genotypes with recombinant chromosomes and chromosome additions involving an extra Festuca chromosome were identified using GISH. Changes in plant phenotype were related to the presence of Festuca chromatin. Received: 20 September 2000 / Accepted: 05 January 2001  相似文献   

9.
Since a pre-zygotic isolating mechanism has been shown to be functioning completely between Group II-B plus and Group II-A minus (Watanabe and Ichimura, 1978b), the reciprocal cross was investigated in order to clarify the presence of a postzygotic isolating mechanism between the two sympatric closely related groups of theClosterium peracerosum-strigosum-littorale complex. Viabilities and fertilities of F1, F2 and backcross progenies of crosses within and between the two groups were studied using two representative pairs, IB-4-2 and IB-4-9 of Group II-A and KAS-4-30 and KAS-4-29 of Group II-B. Viability was estimated by % survival of isolated gones. Viability of F1 progeny was 31.7% in the intergroup cross, while it was 70.0 and 46.0% in the intragroup cross of Group II-A and that of Group II-B, respectively. Viabilities of intragroup F2 and backcross progenies were shown to be in the range of 32.0–76.0%. In contrast with this, those of F2 and backcross progenies of the hybrids obtained in the intergroup cross were shown to be markedly reduced to the range of 0.0–2.5%. Viable clones obtained in these intra-and intergroup crosses were almost all fertile, but one sterile clone was fonnd among F1 progeny of Group II-B. It was concluded that the so-called hybrid breakdown is also at work as, an isolating mechanism between the two groups of this complex. This study was supported by the Grants in Aid. Nos. 00554220 and 56122019, from the Scientific Research Found of the Ministry of Education, Science and Culture, Japan.  相似文献   

10.
Summary

Specimens of the genus Ramazzottius Binda and Pilato, 1986 (Eutar-digrada, Hypsibiidae) were obtained from 2 moss and 1 lichen sample(s) collected in the Emilian Apennine Mountains. R. tribulosus was only found in one sample, whereas R. oberhaeuseri was found in all three. The first species had only diploid specimens, with 6 bivalents during the first meiotic division; the second had only females showing various polyploid cytotypes in addition to the diploid bisexual cytotype cited for this area. One of the triploid and the tetraploid cytotypes were characterized by the presence of univalents at oocyte metaphase. In contrast, another cytotype had “bivalents” in triploid number. Though the large number of cytotypes found in a single sample may be attributed to chance, it is better explained by an in loco origin, at least in some cases.  相似文献   

11.
Based on the presence of three types of eggs with different diameters 0.13, 0.17 and 0.2 cm, we made two crosses: F2 (♀) × diploid red crucian carp (♂), and F2 (♀) × F10 tetraploid (♂). The ploidy levels of the progeny of the two crosses were examined by chromosome counting and DNA content measurement by flow cytometer. In the offspring of the former cross, tetraploids, trip-loids, and diploid were obtained. In the progeny of the latter cross, tetraploids and triploids were observed. The production of the different ploidy level fish in the progeny of the two crosses provided a further evidence that F2 might generate triploid, diploid and haploid eggs. The presence of the male tetraploid found in F2 (♀) × diploid red crucian carp (♂) suggested that the genotype of XXXY probably existed in the tetraploid progeny. The gonadal structures of the tetraploids and triploids indicated that both female and male tetraploids were fertile and the triploids were sterile. We concluded that the formations of different ploidy level eggs from F2 were contributed by endoreduplication and fusion of germ cells.  相似文献   

12.
A V Stolbova 《Genetika》1987,23(8):1390-1398
This article continues the investigation of polyauxotrophic (PA) clones formed in early mitotic progeny of zygotes. Cloning and segregation analysis of PA progeny suggest an unusual state of diploid genome in these strains, which is expressed as elimination of the dominance effect of the wild allele and as suppression or conversion of either of two loci of mating type. In PA progeny, except for recombinant haploids, sporulating diploids and unstable clones were detected. The tetrad analysis of the diploids points to homozygotization for individual markers. Over-replication of diploid set of chromosomes, prior to meiosis, and replacement of the haploid nucleus (the product of meiosis) for the diploid nucleus may explain the appearance of sporulating segregants in the diploid meiotic progeny. Unstable segregants may be considered as heterokaryons with complex interaction of nuclei.  相似文献   

13.
Reproductive capacity was investigated in naturally occurring triploid individuals of the loach Misgurnus anguillicaudatus collected from Memanbetsu Town, Abashiri County, Hokkaido Island, Japan. These triploids have been considered to appear by accidental incorporation of the haploid sperm genome from normal diploid into unreduced diploid eggs from the clonal lineage that usually reproduces unisexually. By fertilization with sperm from the normal male, one triploid female gave many inviable aneuploid (2.1–2.7n) and very few tetraploid progeny, whereas the other produced both diploid and triploid progeny. The results suggest that at least four different types of eggs can be formed in triploid females in this locality. In contrast, no progeny hatched when eggs of the normal female were fertilized with sperm or sperm-like cells obtained from triploid males. These gametes exhibited inactive or no motility after adding ambient water. They had larger head sizes than those of normal haploid sperm and had a short or no tail. Although their ploidy was triploid or hexaploid, a small number of haploid cells were detected in the semen by flow cytometry. Thus, triploid males were generally sterile, but they have a little potential for producing very few haploid sperm.  相似文献   

14.
Morphology and meiosis are described in four progeny plants resulting from tetraploid Grindelia camporum Greene (2n = 24) from California pollinated by diploid G. grandiflora Hook. (2n = 12) from Coahuila, Mexico. Three of the four progeny were tetraploid, morphologically like the pistillate parent, and had metaphase I chromosome configurations which included quadrivalents and a complementary number of bivalents. They are considered to have resulted from selfing. The fourth plant was triploid (2n = 18) andmorphologically intermediate between the parents. Chromosome configurations in the triploid were variable with univalents, ring and rod bivalents, trivalents and pentavalents. These two species are considered related through an ancestor with a basic genome, but are separated cytologically by polyploidy and by two distinct chromosomal interchanges that explain the configurations observed in the triploid hybrid.  相似文献   

15.
Verne Grant 《Chromosoma》1953,5(1):372-390
Summary Gilia millefoliata andG. achilleaefolia, two annual diploid (n=9) species ofPolemoniaceae, crossed readily in certain combinations but not in others. The F1 hybrids were vigorous but sterile. They gave rise, apparently by the union of unreduced gametes, to an F2 generation of tetraploids, which were mostly fertile.Chromosome pairing in the hybrids varied markedly according to the state of nutrition of the plants. The F1 hybrids formed fewer clear diakinesis figures, fewer bivalents, fewer chiasmata per bivalent, and more attenuated or stretched bivalents when grown in 2 pots of sand than when grown in rich soil (Table 3). A pot-bound allotetraploid individual derived from this hybrid showed the same meiotic irregularities as the starved F1s until irrigated with a solution of mineral nutrients, after which its chromosomes paired regularly in bivalents (Table 2, Fig. 38).The capacity of the F1 hybrids to produce polyploids also differed strikingly in the two cultures. The rate of polyploidy of the stunted sand-grown hybrids was 2381 viable tetraploid zygotes per million flowers, while the corresponding figure for the luxuriant field hybrids was only 2.7 per million flowers.For the production of polyploid progeny by diploid parents — a process which should be clearly distinguished from normal fertility — the termpolyploidy rate is proposed. It is suggested that starvation of a structural hybrid may sometimes increase its polyploidy rate by reducing chromosome pairing to the point where restitution nuclei and hence unreduced gametes can be formed.  相似文献   

16.
Mating between a diploid male and a diploid female ofBombus atratus produced fertile triploid F1 females. The F2 descendents of these virgin females were composed of haploid males (10), diploid males (4), aneuploid males (3) and intersexes (2). These data indicate that sex is produced by a balance between male determining and female determining genes: they, also, suggest that the number of sex genes are not large.  相似文献   

17.
The 19 spatially distinct chromosomal units at first meiotic metaphase in sporophytically diploid species of Sphagnum have usually been considered to be bivalents, but one investigator (Sorsa, 1956) has interpreted them as chromosomes from dissociated bivalents and meiosis as post-reductional. The present studies on diploid S. squarrosum (Pers.) Crome establish the chromosome number on the basis of the following evidence: there are in addition to m-chromosomes, 19 pairs of chromosomes in early prophase, 19 bivalents at diakinesis, 19 chromosomes in each of the two sets at second metaphase, 19 daughter chromosomes in each of the four sets at late second anaphase, and 19 chromosomes in gametophytic mitoses. The 19 bodies at first meiotic metaphase in diploid species are true bivalents in loose secondary association, which has led to their erroneous interpretation as chromosomes of dissociated bivalents. The gametic chromosome number in sporophytically diploid Sphagnum is therefore, without doubt, n = 19, and this evidence negates the claim for post-reduction in Sphagnum.  相似文献   

18.
A detailed analysis of microsporogenesis was carried out in three diploid lily cultivars (2n=2x=24) and three diploid interspecific hybrids (2n=2x=24) using DNA in situ hybridisation methods (GISH and FISH). In cvs. Gelria (Lilium longiflorum; L genome), Connecticut King and Mont Blanc (both Asiatic hybrids; Agenome) meiosis was regular and only haploid gametes were formed while the three interspecific hybrids between L. longiflorum×Asiatic hybrid (LA) showed a variable frequency of meiotic nuclear restitution and stainable 2n-pollen formation ranging from 3% to 30%. An analysis of meiotic chromosome behaviour of the LA hybrids through GISH and FISH revealed that: (1) the parental chromosomes could be clearly discriminated into univalents, half-bivalents and bivalents in the PMCs; (2) in some of the PMCs the entire complement was present either as univalents or half-bivalents which had the potential to divide equationally (following centromere division) during the first division leading to first division restitution (FDR) gametes; (3) more frequently, however, in one and the same PMC the univalents and half-bivalents divided equationally whereas the bivalents disjoined reductionally at the same time giving rise to 2n-gametes that could vary from the well-known FDR or SDR 2n-gametes. We indicate this novel type of restitution mechanism as Indeterminate Meiotic Restitution (IMR). In order to confirm the occurrence of IMR gametes, the chromosome constitutions of eight triploid BC1 progenies derived from backcrossing the 2n-gamete producing the LAhybrids to the Asiatic hybrid parents were analysed through in situ hybridisation. The results indicated that there were seven BC1 plants in which FDR 2n-gametes, with or without homoeologous recombinations, were functional, whereas in one case the 2n-gamete resulting from IMR was functional. In the latter, there was evidence for the occurrence of genetic recombination through homoeologous crossing-over as well as through the assortment of homoeologous chromosomes. A singular feature of the IMR 2n-gamete was that although it transmitted a euploid number of 24 chromosomes to the BC1 progeny, the number of chromosomes transmitted from the two parental species was dissimilar: 9 L-genome chromosomes and 15 A-genome chromosomes instead of 12 of each. Received: 15 May 2000 / Accepted: 4 December 2000  相似文献   

19.
Haemaphysalis longicornis consists of diploid bisexual races (20+ XX; 20+X), triploid obligatory parthenogenetic races (30–35 chromosomes) and an aneuploid race capable of bisexual and parthenogenetic reproduction (22–28 chromosomes). Karyotypes were analyzed for each race. Hybridization failed between diploid and triploid races, but succeeded between bisexual diploid males and parthenogenetic aneuploid females. F1 and F2 progeny were produced and their chromosomes studied. Crossing of F1 progeny to a bisexual race was successful. Parthenogenetic ability was almost completely lost in F1 and F2 females. Several possible modes of evolution from diploid bisexual individuals to triploid parthenogenetic ones are discussed as is species characterization in taxa with races reproducing bisexually, parthenogenetically and by a combination of both methods.Supported in part by National Science Foundation Research Grant GB-21008, National Institute of Allergy and Infectious Diseases (NIH) Grant 09556 and the United States Army Medical Research and Development Command, Office of The Surgeon General, Department of the Army, Washington, D. C. 20315, U.S.A.  相似文献   

20.
Six chromosome observations are reported, two being confirmations and four being new counts. Polypodium plesiosorum (from Mexico) shows 37 pairs at meiotic metaphase and thus conforms to past counts of diploid species in this genus. Cheilanthes wrightii (Arizona) has 2n = 58 and is a diploid member of the x = 29 series of that genus. Cheilanthes tomentosa (Alabama) shows 90 units at metaphase of meiosis and approximately the same number during mitosis in the crozier cells. It has 32 spores and our plant is an apogamous triploid. Both Cheilanthes siliquosa (Washington) and C. californica (California) show 30 pairs at meiotic metaphase. Counts on plants identified as C. carlotta-halliae (California) show 30 bivalents and 30 univalents at diakinesis, suggesting that they actually represent allopolyploid backcrosses of C. carlotta-halliae and one of its parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号