首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This article reviews the endocrinological, pharmacological and biochemical evidence ascribing neurotransmitter roles for 5-hydroxytryptamine (5-HT, serotonin) in eliciting the release of red pigment-dispersing hormone (RPDH) and for dopamine (DA) in stimulating the release of red pigment-concentrating hormone (RPCH) in the fiddler crab, Uca pugilator. 5-HT produces red pigment dispersion in intact crabs, but only indirectly. Likewise, DA evokes red pigment concentration in vivo but it has no effect on red chromatophores (erythrophores) in isolated legs. The data obtained with 5-HT and DA agonists and antagonists on red pigment translocation in vivo and in vitro, are consistent with their neurotransmitter candidacies in evoking the release of these erythrophorotropic hormones.  相似文献   

2.
Gamma-aminobutyric acid (GABA) blocked concentration of the pigments in melanophores and erythrophores of intact crabs. GABA blocked the release of pigment concentrating hormones from the isolated eyestalk. Octopamine (OA) blocked black pigment dispersion in intact crabs, but did not affect red pigment dispersion or concentration. OA blocked the release of black pigment dispersing hormone from isolated eyestalks. Met-enkephalin, but not Leu-enkephalin, stimulated black and red pigment concentration in intact crabs. Met-enkephalin, but not Leu-enkephalin, stimulated the release of pigment concentrating hormones from isolated eyestalks. Naloxone blocked the effects of Met-enkephalin in intact crabs and on isolated eyestalks. Beta-endorphin induced black pigment dispersion in intact crabs and in isolated legs.  相似文献   

3.
The polycyclic aromatic hydrocarbon, naphthalene, inhibits the circadian dispersion of epidermal black pigment in the fiddler crab, Uca pugilator, by inhibiting the release of black pigment dispersing hormone. Naphthalene caused no permanent neural damage in Uca pugilator. Naphthalene did not cause a chemically-induced phase shift in the circadian rhythm of black pigment dispersion but reduced the daytime peak of that dispersion. Black pigment concentration, which occurs at night, was not affected by exposure to naphthalene. Black pigment dispersing hormone in naphthalene-exposed crabs can be released by an injection of norepinephrine. Given the points above, and previously published data, it is concluded that naphthalene inhibits circadian black pigment dispersion in Uca pugilator by inhibiting the release of the neurotransmitter, norepinephrine.  相似文献   

4.
This study deals with the effect of deamidation and C-terminal truncation on the potency of an octadecapeptide pigment-dispersing hormone (PDH: Asn- Ser-Gly-Met-Ile-Asn-Ser-Ile-Leu-Gly-Ile-Pro-Arg-Val-Met-Thr-Glu-Ala-NH2), first described as light-adapting distal retinal pigment hormone (DRPH) from Pandalus borealis. Bioassay of synthetic analogs for melanophore pigment dispersion in destalked fiddler crabs (Uca pugilator) showed that deamidation causes a 300-fold decrease in potency. The analogs 1–17-NH2 and 1–16-NH2 were about 3 times more potent than 1–18-OH. Further truncation led to decreases in potency, with the peptide 1–9-NH2 being the smallest C-terminal deletion analog to display activity (0.001% potency). Smaller analogs (1–8-NH2, 1–6-NH2 and 1–4-NH2) were inactive when tested in doses as high as 500 nmoles/crab. On the basis of our earlier work on N-terminal deletion analogs and the present findings the residues 6 to 9 seem to be important for PDH action.  相似文献   

5.
Melatonin was injected into intact and eyestalk-ablated fiddler crabs (Uca pugilator), and its effects on hemolymph glucose and lactate levels were studied. In intact crabs, glucose and lactate levels cycled simultaneously, with peaks occurring during early and late photophase. Melatonin caused a shift in the glucose and lactate cycles, with only one peak occurring closer to mid-photophase. In eyestalk-ablated animals, the glucose rhythmicity was lost; lactate cycled, but levels were significantly lower than in intact animals. Melatonin caused a delayed hyperglycemia in eyestalk-ablated animals, with concurrent but much lower increases in lactate. Overall, melatonin demonstrated delayed hyperglycemic effects that do not appear to be mediated solely via eyestalk factors such as crustacean hyperglycemic hormone (CHH), though involvement of the eyestalks cannot be ruled out. An influence on extra-eyestalk CHH secretion is a potential mechanism of melatonin activity.  相似文献   

6.
The octapeptide red pigment-concentrating hormone is capable of eliciting the aggregation of intracellular pigment granules in distal retinal pigment cells of isolated retinas of the crayfish Procambarus clarkii (Girard). The final level and the time course of pigment aggregation are dose dependent within a range of 10(-10) mol l(-1) to 10(-4) mol l(-1). The effect of red pigment-concentrating hormone is prevented by previous incubation with an anti- red pigment-concentrating hormone antibody; however, application of the antibody after the onset of the red pigment-concentrating hormone effect, does not prevent its full development. A similar effect to that elicited by red pigment-concentrating hormone is induced by the calcium ionophores ionomycin and A-23187. Red pigment-concentrating hormone evokes entry of 45Ca2+ to retinal cells. However, the red pigment-concentrating hormone-induced pigment aggregation persists in the presence of the calcium channel blocker verapamil and in Ca2+-free solutions. Caffeine and thapsigargin, known to release calcium from intracellular stores, elicit distal pigment aggregation, while ryanodine and dantrolene, blockers of intracellular calcium release, as well as the intracellular calcium chelator bapta-AM suppress the effect of red pigment-concentrating hormone. These results suggest that red pigment-concentrating hormone elicits distal retinal pigment aggregation by increasing intracellular calcium concentration, acting via a dual mechanism: (1) promoting calcium entry, and (2) releasing intracellular calcium.  相似文献   

7.
Interaction and habitat partition between the soldier crab Mictyris brevidactylus (prey) and the fiddler crab Uca perplexa (predator) were examined at a sandy tidal flat on Okinawa Island, Japan, where they co-occur. Both live in dense colonies. When the soldier crabs were released in the densely populated habitat of the fiddler crab, male fiddler crabs, which maintain permanent burrows in hard sediment, preyed on small soldier crabs and repelled large ones. Thus, the fiddler crabs prevented the soldier crabs from trespassing. It was also observed whether soldier crabs burrowed successfully when they were released 1) where soldier crab burrows just under the sand were abundant, 2) in a transition area between the two species, 3) an area without either species, and 4) where artificial tunnels simulated soldier crabs' feeding tunnels were made by piling up sand in the area lacking either species. In contrast to the non-habitat area, many soldier crabs burrowed in the sediment near the release point in the tunnel, transition and artificial tunnel areas. This indicates that the feeding tunnels on the surface attracted other crabs after emergence. When the large male fiddler crabs were transplanted into the artificial burrows made in soft sediment of the soldier crab habitat, all left their artificial burrows by 2 days. In the fiddler crab habitat, however, about one-third of the transplanted male fiddler crabs remained in the artificial burrows after 3 days. The soldier crabs regularly disturb the sediment by the up and down movement of their burrow (small air chamber) between tides. This disturbance probably prevents the fiddler crab from making and occupying permanent burrows. Thus, it appears that these crabs divide the sandy intertidal zone by sediment hardness and exclude each other by different means.  相似文献   

8.
Pigment movements in crustacean chromatophores are regulatedby pigment-concentrating and pigment-dispersing neurosecretoryhormones. The release of these hormones from the neurosecretorysystem is thought to be controlled by neural signals. Althoughthe exact cellular sources of chromatophorotropins and the natureof synaptic input to the neurosecretory system remain unresolved,recent pharmacological studies on fiddler crabs indicate thatcertain biogenic amines contribute to the release of some ofthe chromatophorotropins. The current evidence suggests that:5-hydroxytryptamine stimulates the release of RPDH (red pigmentdispersing hormone), dopamine triggers the release of RPCH (redpigment concentrating hormone), and norepinephrine stimulatesthe release of BPDH/MDH (black pigment/melanin dispersing hormone).Nothing is known of the regulation of release of leucophorotropinsand xanthophorotropins. Like most other peptide hormones, crustacean chromatophorotropinsare thought to exert their effect by first binding to receptorson the cell surface and then triggering a series of events leadingto cellular responses, but the details are far from clear. Recentwork suggests that hormone-induced pigment movements may bemodulated/mediated by alterations in cyclic nucleotide levelsand/or by changes in Ca2+ distribution or flux. Both cyclicnucleotides and Ca2+ may modulate motility by regulating theintegrity and/or function of cytoskeletal elements, but thedetails of this mechanism and the precise roles of cytoskeletalelements in the pigment-translocating process remain unresolved.  相似文献   

9.
1. Male fiddler crabs, Uca pugilator, received injections of 5-hydroxytryptamine (5-HT, serotonin). The crabs showed dose-dependent testicular development.2. Like 5-HT, the 5-HT releaser fenfluramine and the 5-HT potentiator fluoxetine induced testicular maturation also, but the 5-HT receptor blocker LY-53857 did not.3. The data support the hypothesis that 5-HT exerts this stimulatory effect on the testes indirectly, by triggering release of gonad-stimulating hormone.  相似文献   

10.
Summary Three species of crabs exercised to fatigue showed a blanching and/or reddening of the body and legs. InUca pugilator this effect was due to white and red pigment dispersion in the leucophores and erythrophores, respectively, and a black pigment concentration in the melanophores. The pigment movements were induced by factor(s) present in the blood of exercisingUca; blood (hemolymph) removed from an exercised crab and injected into the isolated leg segment of another individual cause pigment movements similar to those seen in intact fatigued crabs. The blood of exercisedUca also caused similar chromatophore changes in isolated leg segments of the crabSesarma cinereum. The evidence suggests that blood-borne factor(s) related or identical to chromatophorotropins are released during vigorous exercise in crabs. We speculate that the effects of these exercise factor(s) are secondary to possible effects on carbohydrate and lipid metabolism associated with exercise.  相似文献   

11.
In mid-Atlantic salt marshes, reproductively active male sand fiddler crabs, Uca pugilator, use a single greatly enlarged major claw as both a weapon to defend specialized breeding burrows from other males and an ornament to attract females for mating. During the summer breeding season, females strongly prefer to mate with males controlling burrows in open areas high on the shore. Food availability decreases while temperature and desiccation stress increase with increasing shore height, suggesting that the timing and location of fiddler crab mating activity may result in a potential trade-off between reproductive success and physiological condition for male crabs. We compared thermal preferences in laboratory choice experiments to body temperatures of models and living crabs in the field and found that from the perspective of a fiddler crab, the thermal environment of the mating area is quite harsh relative to other marsh microhabitats. High temperatures significantly constrained fiddler crab activity on the marsh surface, a disadvantage heightened by strongly reduced food availability in the breeding area. Nevertheless, when the chance of successfully acquiring a mate was high, males accepted a higher body temperature (and concomitantly higher metabolic and water loss rates) than when the chances of mating were low. Likewise, experimentally lowering costs by adding food and reducing thermal stress in situ increased fiddler crab waving display levels significantly. Our data suggest that fiddler crabs can mitigate potential life history trade-offs by tuning their behavior in response to the magnitude of both energetic and non-energetic costs and benefits.  相似文献   

12.
The influence of melatonin on locomotor activity levels was measured in the fiddler crab Uca pugilator. First, activity in untreated, laboratory-acclimated crabs was measured over 48 hours in a 12L:12D photoperiod; this study showed a nocturnal increase in activity. In eyestalk-ablated crabs, overall activity was significantly reduced, and no significant activity pattern occurred. Next, crabs were injected with melatonin or saline (controls) at various times during the 12L:12D photoperiod (0900h, 1200h, and twice at 2100h; each trial was separated by 3-4 days) and monitored for 3 hr post-injection. Control crabs had low activity during early photophase, high at mid-photophase, increasing activity during the first scotophase trial, and decreasing activity during the second scotophase trial. Melatonin had no significant influence on activity when injected during the early-photophase activity trough or early-scotophase activity decline, but significantly increased activity when injected during the mid-photophase activity peak and early-scotophase activity incline. Next, crabs were injected during an early scotophase activity trough and monitored throughout the twelve-hour scotophase. Melatonin did not increase activity until the mid-scotophase activity increase, approximately 6 hours later, showing that the pharmacological dosage persisted in the crabs' systems and had later effects during the incline and peak of activity but not the trough. Eyestalk-ablated crabs were injected with melatonin or saline during early photo- and scotophase. Melatonin significantly increased activity in the photophase but not the scotophase trial, indicating that the responsiveness to melatonin continues following eyestalk removal, but the timing may not match that of intact crabs. Melatonin may be involved in the transmission of environmental timing information from the eyestalks to locomotor centers in U. pugilator.  相似文献   

13.
Mud fiddler crabs, Uca pugnax, have a streak of blue coloration located on the front of the carapace above the mouth and centered between the eyes. We documented that this blue streak is absent in juveniles and develops as crabs become sexually mature. By photographing male crabs under controlled conditions in the laboratory, we demonstrated that the brightness of the blue streak (in comparison with the rest of the carapace) is dynamic, and can dim from bright blue to nearly black in fewer than two minutes. We examined blue streak variability in male crabs in response to physical factors (light and temperature) and social context to begin to understand what causes its dynamic response. The blue streak darkens in response to decreased ambient light, but does not respond to changes in temperature. In the field, it is brighter when crabs are roaming on the mudflat or fighting, but darker when crabs are basking or performing waving displays. The highly visual nature of fiddler crabs and the dynamic character of the blue streak suggest that it may communicate information about the state of a crab or its environment.  相似文献   

14.
Variability in salinity is an environmental stressor that crab megalopae encounter as they are carried by tides and currents throughout Chincoteague Bay. We exposed blue crab (Callinectes sapidus) and fiddler crab (Uca spp.) megalopae to abrupt salinity changes from 10 to 31 ppt and measured their oxygen usage. It was hypothesized that the megalopae would cope with the changes in a manner reflective of the documented abilities and tolerances of adult crabs. It was also hypothesized that lower salinities would have a particularly detrimental effect on the megalopae reflected by both increased oxygen usage and mortality. The megalopae of both species did exhibit an increase in oxygen use at lower salinities, although the effect was more pronounced during the initial transition and decreased during acclimation. The megalopae mirrored the adult responses, with blue crab larvae consuming more oxygen per mg of wet weight at lower salinities, whereas fiddler crab larval oxygen consumption was relatively uniform at all salinities. Mortality of some blue crab postlarvae was observed at 10 ppt while all larval fiddler crabs survived. Coupled with the introduction of additional fresh water into the global water system, these results indicate that further investigation into this subject is necessary.  相似文献   

15.
The hypothesis is tested that methionine-enkephalin, a hormone produced in and released from eyestalk of crustaceans, produces hyperglycemia indirectly by stimulating the release of hyperglycemic hormone from the eyestalks. Injection of methionine-enkephalin leads to hyperglycemia and hyperglucosemia in the estuarine crab Scylla serrata in a dose-dependent manner. Decreases in total carbohydrate (TCHO) and glycogen levels of hepatopancreas and muscle with an increase in phosphorylase activity were also observed in intact crabs after methionine-enkephalin injection. Eyestalk ablation depressed hemolymph glucose (19%) and TCHO levels (22%), with an elevation of levels of TCHO and glycogen of hepatopancreas and muscle. Tissue phosphorylase activity decreased significantly during bilateral eyestalk ablation. Administration of methionine-enkephalin into eyestalkless crabs caused no significant alterations in these parameters when compared to eyestalk ablated crabs. These results support the hypothesis that methionine-enkephalin produces hyperglycemia in crustaceans by triggering release of hyperglycemic hormone from the eyestalks.  相似文献   

16.
The role of habitat‐providing species in facilitating associated species abundance and diversity is recognized as a key structuring force in many ecosystems. Reciprocal facilitation by associates, often involving multiple species, can be important for the maintenance of the host species. As with other multi‐species interactions (e.g. multiple predator effects), non‐additive relationships may be common among these associates, yet relatively few studies have examined potential interactions among multiple facilitator species. We combined field surveys and a mesocosm experiment to examine the independent and interactive effects of two co‐occurring facilitator species, ribbed mussels Geukensia demissa and fiddler crabs Uca pugilator, on their host salt marsh plant species, cordgrass Spartina alterniflora. We also experimentally examined how these relationships varied across different host plant genotypes. Overall, facilitator effects increased with increasing facilitator density. There was a significant interaction between mussel and fiddler crab presence, indicating that the effects of each species on cordgrass were dependent on the presence of the other facilitator species. In addition, there were strong interactions among mussels, fiddler crabs, and plant genotype, with greater variation in the performance of individual genotypes when fiddler crabs were absent. Our work reinforces the importance of considering multiple responses when assessing the functional redundancy of co‐occurring facilitators, as species are seldom completely redundant across the range of services they provide. It also highlights that the strength and direction of species interactions can vary due to genetic variation within the interacting species.  相似文献   

17.
Rapid progress has been recorded recently in the understanding of the role of neuro-transmitters and neuropeptides in the control of reproduction and on their apparent potential in the regulation of fertility. Peptides, as well as monoamines, are important in the control of lutinizing hormone releasing hormone and gonadotropin release. The input from brainstem noradrenergic neurons as well as dopamine mediated stimulated release of lutinizing hormone. In addition considerable evidence exist for the occurrence of a specific follicle stimulating hormone-releasing factor. A large number of brain peptides affect the secretion of lutinizing hormone releasing hormone and the endogenous opioid peptides appear to have a physiologically important function in restraining the influence on lutinizing hormone releasing hormone release under most circumstances. Vasoactive intestinal peptide and substanceP stimulate whereas cholecystokinin, neurotensin, gastrin, secretin, somatostatin α-melanosite stimulating hormone and vasotocin inhibit lutinizing hormone release. Of the inhibitory peptides, cholecystokinin and arg-vasotocin are the most potent. Inhibin injected into the ventricle selectively suppresses follicle stimulating hormone release by a hypothalamic action. Thus the control of gonadotropin release is complex and a number of aminergic and peptidergic transmitters are involved.  相似文献   

18.
Fiddler crabs are deposit feeders, and use the setae on their mouth appendages to manipulate sediment particles to extract food. The number of spoon‐tipped setae on the second maxilliped is frequently related to the distribution of fiddler crabs on estuarine sediments, but no study has compared the morphological diversity of these setae among multiple fiddler crab species. Here, we describe and classify the setae of the second maxillipeds of the nine Uca spp. known from the Brazilian coast. The second maxilliped of each species was examined by scanning electron microscopy. Six types of setae (five papposerrate, and one pappose) were described on the meropodite of the second maxilliped. Among the papposerrate setae, one type had a spoon‐like tip, and the morphology of this type, especially the degree of curvature, differed between species. Members of Uca leptodactylus, U. uruguayensis, and U. maracoani had highly concave spoon‐tipped setae. In U. rapax and U. cumulanta, the setal tip was moderately curved, while in U. thayeri, U. burgersi, and U. mordax, this curvature was slight. At the other extreme, the meropodite of the second maxilliped of U. vocator lacked setae altogether. This is the first study that describes differences in the degree of curvature of spoon‐tipped setae in fiddler crabs. This trait may be strongly related to the distribution of these fiddler crabs on different estuarine substrates.  相似文献   

19.
9-cis-Retinoic acid (9CRA) and all-trans-retinoic acid (ATRA) are known to be involved in the regulation of glucose homeostasis in vertebrates by inducing insulin release and expression of glucose transporter proteins. In view of the fact that both 9CRA and ATRA are endogenous to the fiddler crab, Uca pugilator, that a retinoid X receptor exists in this fiddler crab and that activities of insulin-like and insulin-like growth factor-like peptides have been reported for crustaceans, we investigated whether 9CRA and ATRA also play a role in glucose homeostasis in U. pugilator. Neither 9CRA nor ATRA was found to produce hypoglycemic effects at a dose of 10 microg/g live mass. However, 9CRA, but not ATRA, induced hyperglycemia. Such 9CRA-induced hyperglycemia was apparently mediated by the eyestalk hormone CHH since injection of 9CRA into eyestalk-ablated crabs did not result in hyperglycemia. ATRA was found to have an inhibitory effect on the recovery of blood glucose concentration following ATRA administration. Discussion on the possible mechanisms for the actions of 9CRA and ATRA was presented.  相似文献   

20.
Fiddler crabs are key bioturbators on tidal flats. During their intense bioturbation process, they manipulate large amounts of sediment, altering the physical state of existing materials. We investigated whether different types of sediment bioturbation produced by fiddler crabs modulate meiofaunal assemblages and microphytobenthic content. We hypothesized that sedimentary structures produced by burrowing (the burrow itself and the excavation pellets) and feeding (feeding pellets) generate different microenvironments compared with areas without apparent signs of fiddler crab disturbance, affecting both meiofauna and microphytobenthos, independent of the sampling period. Our results indicate that the engineering effects of burrow construction and maintenance and the engineering effects of fiddler crab foraging modulate meiofaunal assemblages in different ways. Overall, meiofauna from burrows and excavation pellets was more abundant and diverse than at control sites, whereas feeding pellets contained poor meiofaunal assemblages. By contrast, only foraging effects were detected on microphytobenthos; independent of the sampling period, Chl a and phaeopigment content were higher in the feeding pellets, but similar among burrows, excavation pellets and control sites. The present study demonstrates that the different engineering effects of fiddler crabs are an important source of habitat heterogeneity and a structuring agent of meiofaunal assemblages on subtropical tidal flats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号