首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using field and greenhouse experiments, we tested two hypotheses that could account for the maintenance of outcrossing in Impatiens capensis. Seedlings derived from cleistogamous (CL) and chasmogamous (CH) flowers were grown under competitive conditions while flanked by neighbors that were either related or unrelated. In both experiments, CH progeny sometimes expressed more phenotypic variability than CL progeny. In the greenhouse experiment, CH progeny attained the same weight as CL progeny, and the relatedness of neighboring plants did not affect the growth of either type. In the field experiment, CL and CH progeny performed similarly when grown with related competitors. However, CH progeny were somewhat larger when planted with nonsibs, while CL progeny were somewhat smaller under those conditions. Thus, there is no evidence that either frequency-dependent selection or the avoidance of competition among siblings favors the maintenance of outcrossing in this species. We also modeled the relative variability of selfed and outcrossed progeny under several reproductive systems. When females mate with one male (progeny are full sibs), selfed progeny are often more variable than outcrossed progeny. When females engage in both selfing and outcrossing, variation among progeny is frequently maximized at an intermediate selfing rate. The sib-competition mechanism, under a range of genetic models, is not apt to promote outcrossing, since selfed progeny are commonly more variable than outcrossed progeny.  相似文献   

2.
We investigated the effect of intraspecific competition on the magnitude of inbreeding depression in Impatiens capensis by planting seeds from chasmogamous (CH) and cleistogamous (CL) flowers in three experimental greenhouse treatments: in individual pots, in flats in dense pure stands according to seed type, and in flats with the two seed types intermixed in a checkerboard array. The size distributions of plants grown in flats were significantly more hierarchical than those of plants grown individually, indicating that larger plants competitively suppressed smaller plants in the high-density treatments. The magnitude of inbreeding depression at high density depended upon the planting arrangement of CL and CH seeds. CH advantage was greatest when CH and CL seedlings were grown in competition with one another, suggesting that fitness differences between outcrossed and inbred individuals were intensified by dominance and suppression. For plants grown individually, the effects of maternal parent, seed weight, and emergence date on seedling size disappeared with plant age, whereas at high density these effects remained at the final harvest. Thus, plant density may influence patterns of natural selection both on mating system and on juvenile traits in natural Impatiens populations.  相似文献   

3.
Seed germination and seedling/juvenile fitness in the cleistogamous perennials Viola hirta, V. mirabilis, and V. riviniana were investigated during three growing seasons, to compare the performance of chasmogamously (CH) and cleistogamously (CL) derived progeny. For V. hirta and V. mirabilis the effects of sibling competition were examined, for V. riviniana the effects of interspecific (grass) competition. Seed abortion and seed weight were also taken into account as fitness measures.In none of the species, seed abortion rate differed between CH and CL capsules. In V. mirabilis and V. riviniana, CL seeds had a lower germination rate than CH seeds. In V. hirta the two seed types did not differ in germinability. Mortality did not differ between the two seedling types in any of the species. In V. hirta and V. riviniana, CL progeny had shorter mean length of largest leaf than CH progeny. In V. mirabilis plant size did not differ between progeny types. Sibling competition had little effect on offspring performance, but grass competition increased mortality and reduced plant size of V. riviniana progeny. The two progeny types did not differ in their response to sibling and grass competition.The differences in performance between progeny types could be attributable to inbreeding depression in the CL phase, but the slightly lower fitness of CL offspring is probably balanced by their lower production costs. It is suggested that a dimorphic reproductive system is maintained in perennial Viola species to maximize total seed output in the face of environmental variation.  相似文献   

4.
This study compares survival and growth of progeny derived from chasmogamous (CH) and cleistogamous (CL) flowers in Impatiens capensis, a forest annual. When progeny were grown in the field, CH seeds had significantly higher survival rates over winter (64% versus 56%), and the survival advantage of outcrossed progeny was not attributable to seed weight differences. No differences in seedling growth were detected. Greenhouse comparisons revealed no difference in seed survival but a 30% growth advantage to CH seedlings. We found no changes in developmental homeostasis of three leaf shape characters between inbred and outbred progeny, nor was there any difference in variability within CH and CL families. The outcrossing advantage observed in these experiments could not have been caused by avoidance of sib competition. Theory predicts that self-pollinated progenies may be more variable than outcrossed progenies if rare, recessive alleles are important contributors to genetic variances. Electrophoretic markers indicate that progeny derived from CH flowers are predominantly outcrossed (at least 54-97%).  相似文献   

5.
We estimated rates of self-fertilization and inbreeding depression in the hermaphroditic perennial Arabis fecunda. Crosses were made on mesh-bagged wild plants, yielding 12 plants producing self-, outcross-, and naturally fertilized seeds that were then grown in a greenhouse. Analysis of variance indicated aboveground dry weight at 160 days differed among pollination treatments, but mean seed weight, number of seeds per fruit, and days to germination did not. For dry weight, selfed progeny have 9.4% reduction and naturally pollinated progeny a 3.7% reduction compared to outcrossed progeny, suggesting a 39% selling rate in Arabis. Significant inbreeding depression and a mixed mating system are evidence that the deleterious effects of self-fertilization are maintained through high rates of mildly deleterious mutation. Significant maternal-parent-by-pollination-treatment interactions for mean seed weight and dry weight are consistent with inbreeding depression caused by deleterious recessives and varying past maternal inbreeding.  相似文献   

6.
The genetic consequences of a plant's mating system depend on both the degree of outcrossing and the genetic relationship between mates. We examined the electrophoretic genotypes of seeds derived from cleistogamous (CL) and chasmogamous (CH) flowers in six populations of the facultatively cleistogamous annual, Impatiens capensis. Multilocus estimates of the outcrossing rates for the strongly protandrous CH flowers ranged from 0.29 to 0.71 and were higher than estimates based on single-locus data. Such results suggest that the CH flowers experience variable levels of both geitonogamous self-fertilization and biparental inbreeding. A new and generally applicable technique based on the relative level of inbreeding within progeny groups provided direct estimates of the correlation between the genotypic values of outcrossed mates. These correlations varied widely among populations and contributed up to half of the inbreeding observed among the CH progeny. Such biparental inbreeding biases estimates of the outcrossing rate based on the mixed-mating model downward and influences mating-system evolution by decreasing the “cost of meiosis.”  相似文献   

7.
Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved.  相似文献   

8.
In rare plants that often occur in small or isolated populations the probability of selfing between close relatives is increased as a consequence of demographic stochasticity. The mode of pollination (selfing, outcrossing) may have considerable effects on seed traits and offspring performance and hence potential viability. Since current efforts aiming at the restoration of floodplain grasslands through the transfer of plant material from species-rich source stands may lead to the establishment of initially small populations consisting of founders from different populations, the present paper experimentally investigated the effects of pollen source and floral types (i.e. chasmogamous (CH) and cleistogamous (CL) flowers) on seed traits and offspring performance in three highly endangered violet species (Viola elatior, V. pumila, V. stagnina) of these grasslands. We estimated inbreeding depression and tested the performance of selfed and outcrossed offspring in two microbial environments, i.e. in soil inoculated with (i) non-sterile substrate from the same species (‘home’-conditions) and (ii) sterilised substrate.Plants produced more CL capsules than CH flowers. Pollinator exclusion had only small effects on CH seed production. CL seeds had a significantly lower mass per seed than CH seeds. This may be related to constraints in allocation or environmental conditions. Seedling growth was reduced in plants grown under ‘home’-conditions as compared to control soils. Under ‘home’-conditions, relative fitness of selfed seedlings of V. stagnina was significantly higher than that of crossed progeny. Our results suggest that high genetic differentiation among populations as a consequence of isolation may result in outbreeding depression, e.g., through biochemical or physiological incompatibilities between genes or the breaking of coadapted gene complexes. In V. stagnina, offspring fitness differed considerably between environments, but in general we found no indications for inbreeding depression in these rare species.  相似文献   

9.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

10.
Depending on its genetic causes, outbreeding depression in quantitative characters may occur first in the free-living F1 generation produced by a wide cross. In 1981–1985, we generated F1 progenies by hand-pollinating larkspurs (Delphinium nelsonii) with pollen from 1-m, 3-m, 10-m, or 30-m distances. From the spatial genetic structure indicated by previous electrophoretic and reciprocal transplantation studies, we estimate that these crosses range from being inbred (f ≈ 0.06) to outbred. We planted 594 seeds from 66 maternal sibships under natural conditions. As of 1992, there was strong evidence for both inbreeding depression and outbreeding depression. Progeny from intermediate crossing distances grew approximately twice as large as more inbred or outbred progeny in the first 5 yr after planting (P = 0.013, repeated measures ANOVA), and survived almost 1 yr longer on average (contrast of 3-m and 10-m treatments versus 1 m and 30 m; P = 0.028, ANOVA). Twenty maternal sibships produced flowering individuals; only four and two of these represented 1-m and 30-m crossing distances, respectively (P = 0.021, G-test). The cumulative fitness of intermediate distance sibships averaged about twice that of 1-m sibships, and five to eight times that of 30-m sibships (P = 0.017, ANOVA). Thus, even though progeny of 1-m crosses were inbred to a degree only about one-eighth that of selling, inbreeding depression approximated 50%, and outbreeding depression equaled or exceeded 50% for all fitness components.  相似文献   

11.
The germination behavior and early growth of chasmogamous (CH) and cleistogamous (CL) progeny of Impatiens capensis were investigated in two eastern Nebraska stands. Field germination of families of buried seeds was scored in mid-April. In one stand a significantly higher proportion of CL seeds germinated than CH seeds while no significant differences were observed in the second stand. Among-family variation in germination rates was significant in both stands. The time course of field germination was similar for CL and CH seeds. A sample of the germinated CL and CH seedlings, matched in size, was planted individually in pots and grown in the greenhouse for five wk. Early growth of CL and CH seedlings was similar. In addition, CL seedlings were as variable as CH seedlings for four morphological traits. Overall, a large fitness advantage for CH progeny was not detected in the germination and early growth of Impatiens capensis seedlings.  相似文献   

12.
Although it is known that floral dimorphism contributes to the maintenance of mixed breeding systems, the consequences of producing progeny of a contrasting genetic background and seeds with differential resource allocation has been practically ignored regarding establishment of belowground organisms–plant interactions. This article evaluates the combined effect of floral dimorphism with cross type and light environment on interactions between Ruellia nudiflora and arbuscular mycorrhizal fungi (AMF). R. nudiflora produces cleistogamous (CL) flowers that exhibit obligate self‐pollination and chasmogamous (CH) flowers with facultative self‐ (CHs) or cross‐ (CHc) pollination. We evaluated the establishment of the plant–AMF interaction in progeny derived from each floral type, under two light conditions (shaded versus open). We established different scenarios depending on the existence of inbreeding depression (ID) and whether the differential resource allocation (DRA) to CH and CL flowers affected the R. nudiflora–AMF interaction. We predicted that under shaded light conditions there might be an intensification of ID, having a negative effect on AMF colonisation. The percentages of hyphae and vesicles in the harvested roots was significantly higher in the shaded plants (F ≥ 4.11, < 0.05), while progeny of CHc and CHs presented a higher percentage of hyphae and vesicle colonisation compared to CL progeny (F = 15.26, < 0.01). The results show that DRA to CH flowers and light availability both determines the establishment of R. nudiflora–AMF interaction. The results also suggest that even under stressful light conditions, endogamy does not affect this interaction, which may explain the success of R. nudiflora as an invasive species.  相似文献   

13.
We tested the fertilization efficiency hypothesis, which attempts to explain mean seed size variation among plants within single populations, by comparing the patterns of seed size variation between chasmogamous (CH) flowers and cleistogamous (CL) flowers in Impatiens noli-tangere and Viola grypoceras, respectively. The fertilization efficiency hypothesis predicts that larger plants produce larger seeds if the number of pollen grains captured by a plant increases with increased allocation of resources to its attractive structures (e.g., corolla and nectar), but with diminishing gains. Thus, seed size should depend on plant size in seeds from CH flowers because of the diminishing gains of capturing pollen in these flowers, whereas seed size should not depend on plant size in seeds from CL flowers because CL flowers need not capture outcross pollen. We found significant positive correlations between mean seed size per plant and plant size for seeds from CH flowers in both species. However, there was no significant positive correlation between these two factors for seeds from CL flowers of both species. The results of the present investigations were thus consistent with the fertilization efficiency hypothesis.  相似文献   

14.
A population of the cleistogamous grass, Microlaena polynoda, was investigated to determine some of the factors responsible for adjusting the balance between reproduction by chasmogamous (CH) and cleistogamous (CL) flowers, the tissue costs associated with the two reproductive modes, the fate of progeny produced by each mode, and the genetic diversity of the progeny. Cleistogamous flower production begins earlier in the season than CH flower production. There is a distinct threshold of low light intensity below which mostly CL flowers are produced. Paternal expenditure per plant is an order of magnitude larger for the CH than the CL component. The opposite relation holds for maternal expenditure. Increased maternal expenditure in the CL component may be due to greater fertilization success and retrieval of paternal costs. Cleistogamous seeds are dispersed later than CH seeds. Following dispersal, the spikelet encloses the CL seed but not the CH seed, and is responsible for inducing dormancy. The ratio of seedlings arising from CH seeds to that from CL seeds in a natural habitat is significantly lower than the ratio of estimated numbers of CH to CL seeds produced. There were no detectable polymorphisms among ten presumptive enzyme loci assayed. Many of the features associated with CH and CL reproduction in M. polynoda are in accord with the theoretical requirements for the evolution of closed flower self-pollination and the maintenance of two distinct methods of reproduction.  相似文献   

15.
Abstract: Seed weight, seed germination, seedling survival, and juvenile/adult fitness in chasmogamously (CH) and cleistogamously (CL) derived offspring of Oxalis acetosella were compared during three growing seasons, to test hypotheses of fitness differences between the offspring types accounting for the maintenance of cleistogamy. In plots at three field sites, CH and CL seeds originating from all sites were sown to compare the performance of offspring growing in their habitat of origin and offspring growing in new habitats. Seeds were also sown in pots in a common garden, to test for effects of sibling competition. CL seeds had significantly lower germination than CH seeds in the field, possibly because of lower mean seed weight due to later flowering. Since the outcrossing rate in the CH flowers of O. acetosella is not known, it is uncertain whether the lower CL germination is a consequence of inbreeding depression. CH seeds had higher germination if sown at their home sites than at new sites, while for CL seeds this made no difference; this contradicts the local adaptation hypothesis for cleistogamy. No other fitness differences were found between the offspring types, and the findings did not support the sibling competition or local adaptation hypotheses. We suggest that the maintenance of the dimorphic reproductive system in O. acetosella is not explained by offspring characteristics, but rather by the two flowering phases complementing each other in maximizing annual seed production in the face of environmental variability. It is, therefore, important to include temporal and spatial variation in studies of reproductive strategies.  相似文献   

16.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

17.
Inbreeding depression (δ) is a major selective force favoring outcrossing in flowering plants. Many phenotypic and genetic models of the evolution of selfing conclude that complete outcrossing should evolve whenever inbreeding depression is greater than one-half, otherwise selfing should evolve. Recent theoretical work, however, has challenged this view and emphasized (1) the importance of variation in inbreeding depression among individuals within a population; and (2) the nature of gene action between deleterious mutations at different loci (epistasis) as important determinants for the evolution of plant mating systems. The focus of this study was to examine the maintenance of inbreeding depression and the relationship between inbreeding level and inbreeding depression at both the population and the individual level in one population of the partially self-fertilizing plant Plantago coronopus (L.). Maternal plants, randomly selected from an area of about 50 m2 in a natural population, were used to establish lines with expected inbreeding coefficients (f) of 0, 0.25, 0.50, 0.75, and 0.875. Inbreeding depression was estimated both in the greenhouse and at the site of origin of the maternal plants by comparing growth, survival, flowering, and seed production of the progeny with different inbreeding coefficients. No significant inbreeding depression for these fitness traits was detected in the greenhouse after 16 weeks. This was in strong contrast to the field, where the traits all displayed significant inbreeding depression and declined with increased inbreeding. The results were consistent with the view that mutation to mildly deleterious alleles is the primary cause of inbreeding depression. At the family level, significantly different maternal line responses (maternal parent × inbreeding level interaction) provide a mechanism for the invasion of a selfing variant into the population through any maternal line exhibiting purging of its genetic load. At the population level, evidence for synergistic epistasis was detected for the probability of flowering, but not for total seed production. At the family level, however, a significant interaction between inbreeding level and maternal families for both traits was observed, indicating that epistasis could play a role in the expression of inbreeding depression among maternal lines.  相似文献   

18.
The maintenance of gynodioecy and androdioecy in angiosperms   总被引:7,自引:0,他引:7  
D. G. Lloyd 《Genetica》1975,45(3):325-339
Algebraic models of gynodioecy show that the effects on the equilibrium sex ratio of the relative survival and seed production of the sexes and of inbreeding of male-fertile plants are identical for all genic modes of inheritance, provided that different genotypes among male-fertile plants (or among females) do not differ in average fitness. The effects of three modes of inbreeding on equilibrium sex ratios are examined. If there is competition between self- and cross-fertilization of male-fertile individuals, a stable sexual dimorphism can be maintained by an outbreeding advantage of females if both the proportion of cross-fertilized seeds among those borne on male-fertile individuals,t, and the inbreeding depression (fitness inbred/outbred seeds),i, are less than one half. A lower frequency of females is obtained for the same values oft andi if self-fertilization precedes cross-fertilization. If self-fertilization follows cross-fertilization, gynodioecy cannot be maintained by an outbreeding advantage of females. When the sex phenotypes of gynodioecious populations are determined by cytoplasmic inheritance, females need only a slight advantage over males in survival, ovule production or outbreeding to persist at equilibrium. When determined by nuclear genes, androdioecy can be maintained by greater fecundity or a higher survival rate of males than of female-fertile plants, but not by an outbreeding advantage. Androdioecy cannot be maintained with cytoplasmic inheritance of sex. The models suggest explanations for the more frequent occurrence of gynodioecy than of andrdioecy, the high frequency of gynodioecy in Hawaii and New Zealand, and the origin of gynodioecy from hermaphrodite but not from monoecious ancestors.  相似文献   

19.
Two hypotheses have been proposed concerning possible fitness advantages of multiple paternity. According to the Elbow Room hypothesis, the magnitude of resource partitioning is positively correlated with the genetic diversity of competitors. This leads to the prediction that the mean fitness of competing half-siblings will exceed the mean fitness of competing full-siblings. The Lottery hypothesis suggests that in a patchy environment a genetically diverse sibship increases the probability that a mother will produce winning phenotypes for each of several different microsites. Both hypotheses were tested in a greenhouse experiment with wild radish, Raphanus sativus. Progeny derived from factorial crosses were raised in competition as full- or half-siblings. To simulate environmental variation, the experiment was replicated across a gradient of nutrient concentrations. After 9 weeks, the aboveground biomass of all plants was harvested and oven-dried. Although dry weights were strongly influenced by nutrient level, within nutrient classes there were no significant differences in the mean dry weight of full- and half-sib competitors. Thus, there was no evidence for the Elbow Room hypothesis. In addition, there were no significant differences in numbers of winning phenotypes in the two competition regimes. Therefore, there was also no support for the Lottery hypothesis. Although competition regime did not influence the mean fitness of competing progeny, it significantly affected variation in dry weight of seedlings within pots. Higher coefficients of variation in half-sib pots suggest that interference competition may be greater in genetically diverse sibships.  相似文献   

20.
To determine whether inbreeding depression accounts for the maintenance of outcrossing in populations of the self-compatible orchidEncyclia cochleata, the estimated selective advantage of selfing was compared to a measure of inbreeding depression. Individuals from three populations ofE. cochleata and some of their progeny were phenotyped using isozyme analysis. The electrophoretic data were used to estimate the outcrossing rate and the theoretical cost of outcrossing. Inbreeding depression was estimated by comparing the fitness of the progeny resulting from both types of pollinations. The seeds from outcrossed and selfed hand-pollinations and naturally pollinated seeds from a population of the triandrous form ofE. cochleata were grown aseptically on culture media, and their development over the next three years recorded. Inbreeding was common, particularly in one population (outcrossing rate 40%). However, the level of inbreeding depression was only 1–2%, considerably less inbreeding depression than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号