首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization between Rhododendron ferrugineum L. and R. hirsutum L. in south-eastern Alps was examined in order to (i) evaluate the breeding direction and the extent of backcrossing between hybrids and the parental species, (ii) define which processes facilitate speciation and maintain species identities and (iii) clarify the role of rock geochemistry in hybridization events. Individuals of three hybrid populations were analysed by morphological and molecular markers. The internal transcribed spacer and trnH–psbA distinguished the parental species and F1 hybrids while only the simple sequence repeat markers recognized genotype classes: F, H, F1, F2, BxF (backcross to R. ferrugineum) and BxH (backcross to R. hirsutum). Combining morphological and molecular data, we found that the tested populations had complex genetic structure: the F1 individuals produce F2 hybrids and backcross to parental species. Due to R. hirsutum phenology, most backcrossing events were with this parental species (asymmetric hybridization). Geochemical analyses indicate that alkaline soil conditions linked to calcareous dolomitic rocks promoted the genetic assimilation of R. hirsutum. In addition, R. x intermedium shows a higher edaphic adaptation than R. hirsutum as it can be found on a wide range of calcareous-dolomitic rocks as well as on weakly acidic soils of natural or anthropogenic origin.  相似文献   

2.
Within a broad (>200 km wide) hybrid zone involving three parapatric species of Aesculus, we observed coincident clines in allele frequency for 6 of 14 electrophoretic loci. The cooccurrence of alleles characteristic of A. pavia, A. sylvatica, and A. flava was used to estimate genetic admixtures in 48 populations involving various hybrids between these taxa in the southeastern United States. High levels of allelic polymorphism (up to 40% greater than the parental taxa) were observed in hybrid populations and also in some populations bordering the hybrid zone. A detailed analysis of a portion of the hybrid zone involving A. pavia and A. sylvatica revealed a highly asymmetrical pattern of gene flow, predominantly from Coastal Plain populations of A. pavia into Piedmont populations of A. sylvatica. Computer simulations were used to generate expected genotypic arrays for parental, F1; and backcross individuals, which were compared with natural populations using a character index scoring system. In these comparisons, hybrid individuals could be distinguished from either parent, but F1 and backcross progeny could not be distinguished from each other. Most hybrid populations were found to include hybrids and one of the parental taxa, but never both parents. Three populations appeared to be predominantly hybrids with no identifiable parental individuals. Hybrids occurred commonly at least 150 km beyond the range of A. pavia, but usually not more than 25 km beyond the range of A. sylvatica. Introgression, suggested by genetically hybrid individuals and significant gene admixtures of two or more species in populations lacking morphological evidence of hybridization, may extend the hybrid zone further in both directions. The absence of one or both parental species from hybrid populations implies a selective disadvantage to parentals in the hybrid zone and/or that hybridization has occurred through long-distance gene flow via pollen, primarily from A. pavia into A. sylvatica. Long-distance pollen movement in plants may generate hybrid zones of qualitatively different structure than those observed in animals, where gene flow involves dispersal of individuals.  相似文献   

3.
Hybridisation is considered an important evolutionary phenomenon in Gnaphalieae, but contemporary hybridisation has been little explored within the tribe. Here, hybridisation between Helichrysum orientale and Helichrysum stoechas is studied at two different localities in the islands of Crete and Rhodes (Greece). Using three different types of molecular data (AFLP, nrDNA ITS sequences and cpDNA ndhF sequences) and morphological data, the aim is to provide simultaneous and direct comparisons between molecular and morphological variation among the parental species and the studied hybrid populations. AFLP profiles, ITS sequences and morphological data support the existence of hybrids at the two localities studied, shown as morphological and genetic intermediates between the parental species. Chloroplast DNA sequences show that both parental species can act either as pollen donor or as maternal parent. Fertility of hybrids is demonstrated by the viability of seeds produced by hybrids from both localities, and the detection of a backcross specimen to H. orientale. Although there is general congruence of morphological and molecular data, the analysis of morphology and ITS sequences can fail to detect backcross hybrids.  相似文献   

4.
While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y‐chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Hochwender CG  Fritz RS 《Oecologia》2004,138(4):547-557
To determine the influence of plant genetic variation on community structure of insect herbivores, we examined the abundances of 14 herbivore species among six genetic classes of willow: Salix eriocephala, S. sericea, their F1 and F2 interspecific hybrids, and backcross hybrids to each parental species. We placed 1-year-old plants, grown from seeds generated from controlled crosses, in a common garden. During the growing season, we censused gall-inducing flies and sawflies, leaf-mining insects, and leaf-folding Lepidoptera to determine the community structure of herbivorous insects on the six genetic classes. Our results provided convincing evidence that the community structure of insect herbivores in this hybrid willow system was shaped by genetic differences among the parental species and the hybrid genetic classes. Using MANOVA, we detected significant differences among genetic classes for both absolute and relative abundance of herbivores. Using canonical discriminant analysis, we found that centroid locations describing community structure of the insect herbivores differed for each genetic class. Moreover, the centroids for the four hybrid classes were located well outside of the range between the centroids for the parental species, suggesting that more than additive genetic effects of the two parental species influenced community formation on hybrid classes. Line-cross analysis suggested that plant genetic factors responsible for structuring the herbivore community involved epistatic effects, as well as additive and dominance effects. We discuss the ramifications of these results in regard to the structure of insect herbivore communities on plants and the implications of our findings for the evolution of interspecific interactions.  相似文献   

6.
Hybrid zones in fluvial fishes may be heterogeneous from drainage to drainage. The comparison of data from morphology, allozymes, and mitochondrial DNA (mtDNA) indicates variability in the causes and degree of restriction of gene flow between Notropis cornutus and Notropis chrysocephalus. Allozyme marker loci show frequency-dependent introgression; i.e., the rarer species, whichever it is at a particular locality, tends to exhibit a higher proportion of introgressed alleles. Unlike allozymes, introgression of mtDNA haplotypes varies geographically. In westward-flowing Michigan drainages, N. cornutus mtDNA haplotypes are more common in F1 hybrids and backcrosses, independent of parental frequencies. In eastward-flowing Michigan drainages, N. chrysocephalus mtDNA is more common in F1 hybrids and backcrosses; this pattern may be due to local ecological effects or frequency-dependent introgression. Morphological data alone are not sufficient to distinguish all classes of hybrids. The lack of concordance of morphological, allozymic, and mtDNA introgression patterns implies operation of one or two factors: 1) geographically variable patterns of selection against different hybrid and backcross combinations or 2) genetic differences between Michigan populations inhabiting eastward- and westward-flowing drainage systems accumulated during historical isolation.  相似文献   

7.
The genetic composition of a hybrid zone can provide insight into the evolution of diversification in plants. We carried out morphological and amplified fragment length polymorphism analyses to investigate the genetic composition of a hybrid zone between two violets, Viola bissetii Hemsl. and Viola rossii Maxim. Our aim was to clarify the formation and maintenance of hybrids between these Viola species. We found that most hybrid individuals (V. bissetii × V. rossii) were of the F1 generation, with a few of the F2 generation. We found no backcrosses. The scarcity of post‐F1 hybrids indicates that a species barrier is established between the parental species. The F1‐dominated hybrid zone occupied only a narrow, intermediate ecotone between the parental habitats, suggesting that selection by environmental factors against hybrids may help to maintain the current conditions in this hybrid zone.  相似文献   

8.
In this work we investigate the effect of interspecific hybridization on wing morphology using geometric morphometrics in the cactophilic sibling species D. buzzatii and D. koepferae. Wing morphology in F1 hybrids exhibited an important degree of phenotypic plasticity and differs significantly from both parental species. However, the pattern of morphological variation between hybrids and the parental strains varied between wing size and wing shape, across rearing media, sexes, and crosses, suggesting a complex genetic architecture underlying divergence in wing morphology. Even though there was significant fluctuating asymmetry for both, wing size and shape in F1 hybrids and both parental species, there was no evidence of an increased degree of fluctuating asymmetry in hybrids as compared to parental species. These results are interpreted in terms of developmental stability as a function of a balance between levels of heterozygosity and the disruption of coadaptation as an indirect consequence of genomic divergence.  相似文献   

9.
Rhinanthus minor andRhinanthus angustifolius are known to hybridize in mixed populations in nature. These hybridization events can have important evolutionary consequences. The development and use of species-specific RAPD and ISSR markers allowed the detection of hybrid individuals not always distinguishable with morphological characters. Two mixed populations of different ages were studied. In a young mixed 2-year-old population, both individuals of the two parental species and F1 hybrids were found using genetic analysis, showing that hybridization occurred rapidly. Flower morphology of F1 hybrids was too variable to distinguish all these hybrids from the parental species. This morphological variability of F1 hybrids was also confirmed in artificial crosses in the greenhouse. In an old and no longer mixed 30-year-old population, onlyR. angustifolius plants and a few genetically introgressed individuals close toR. angustifolius were present. Genetic markers showed traces of past hybridization and introgression. Unidirectional introgression ofR. minor intoR. angustifolius with the complete disappearance ofR. minor from this population was observed.  相似文献   

10.
Cottonwoods are dominant riparian trees of the western United States and are known for their propensity to hybridize. We compared the decomposition of leaf litter from two species (Populus angustifolia and P. fremontii) and their hybrids. Three patterns were found. First, in one terrestrial and two aquatic experiments, decomposition varied twofold among tree types. Second, backcross hybrid leaves decomposed more slowly than those of either parent. Third, the variation in decomposition between F1 and backcross hybrids was as great as the variation between species. These results show significant differences in decomposition in a low-diversity system, where >80% of the leaf litter comes from just two species and their hybrids. Mechanistically, high concentrations of condensed tannins in leaves appear to inhibit decomposition (r 2=0.63). The initial condensed tannin concentration was high in narrowleaf leaves, low or undetectable in Fremont leaves, and intermediate in F1 hybrid leaves (additive inheritance). Backcross hybrids were high in condensed tannins and were not different from narrowleaf (dominant inheritance). Neither nitrogen (N) concentration nor the ratio of ash-free dry weight to N (a surrogate for carbon:nitrogen ratio) were significantly correlated with decomposition. The N content of leaf material at the end of each year’s experiment was inversely correlated with rates of litter mass loss and varied 1.6- to 2.1-fold among tree classes. This result suggests that hybrids and their parental species are used differently by the microbial community. Received: 7 April 1999 / Accepted: 2 November 1999  相似文献   

11.
The effects of hybridization on developmental stability and size of tooth characters were investigated in intersubspecific crosses between random-bred wild strains of the house mouse (Mus musculus domesticus and M. m. musculus). Fluctuating asymmetry (FA) and trait size were compared within and between parental, F1, backcross, and F2 hybrid groups. The relationship between FA and reproductive fitness within the F1 hybrids was also studied. The results indicated that both FA and character size levels differed significantly between the two subspecies. The F1 hybrids and the recombined groups (backcrosses and F2 hybrids) showed heterosis for both parameters. No significant differences in the FA of fertile and sterile F1 hybrid individuals were found. Comparison of the FA levels obtained in this study with those found in wild populations from the hybrid zone in Denmark showed that the levels of FA were lower in laboratory-bred samples than in the wild populations. This study provides further evidence that, in hybrids, the developmental processes underlying most of the morphological traits we studied benefit from a heterotic effect, despite the genomic incompatibilities between the two European house mice revealed by previous genetical and parasitological studies.  相似文献   

12.
Many investigators categorize individuals from hybrid zones to facilitate comparisons among genotypic classes (e.g., parental, F1, backcross) for comparative studies in which components of fitness or geographic variation are being analyzed. Frequently, multiple character sets representing genetically independent traits are used to classify these individuals and various methodologies are employed to combine the classifications obtained from the different character sets. We adapted the principles of total evidence and taxonomic congruence (two formalized approaches used by systematists in formulating phylogenetic hypotheses) to address the problem of discriminating hybridizing species and classifying individuals from hybrid zones. As our model, we used two morphological (coloration and morphometric) and two molecular (allozyme and mitochondrial DNA restriction-fragment-length polymorphism) character sets that differentiate two stone crab species (Menippe adina and M. mercenaria). Using principal-components analysis, we determined that combining character sets and eliminating characters or character sets that did not have large eigenvector coefficients for the principal component that best separated the two species yielded the highest level of discrimination between species and allowed us to classify a broad range of morpho-genotypes as hybrids. For the stone crabs, three diagnostic allozyme loci and five diagnostic coloration characters best separated the species. The two character sets were not completely congruent, but they agreed in their classification of 50% of the individuals from the hybrid zone and rarely strongly disagreed in their classifications. Classification discrepancies between the two character sets probably represent variation between traits in interspecific gene flow rather than intraspecific, ecologically mediated variation. Our results support the assertions of previous investigators who espoused the benefits associated with using multiple character sets to classify individuals from hybrid zones and demonstrate that, if character sets are reasonably congruent and numerically balanced, combining diagnostic characters from multiple character sets (a total-evidence approach) can enhance discriminatory power between species and facilitate the assignment of hybrid-zone individuals to genotypic classes. On the contrary, classifying hybrid-zone individuals using character sets separately (a taxonomic-congruence approach) provides the opportunity to compare levels of introgression between species and to assess reasons for discordance among the data sets.  相似文献   

13.
Pollen-tube growth and seed siring ability were measured in crosses between the Louisiana iris species Iris fulva and Iris hexagona and their F1 and F2 hybrids. Flowers of the parental species were pollinated with self, outcross intraspecific, and interspecific pollen. Pollen-tube lengths were similar for all three pollen types in I. fulva, but in I. hexagona interspecific pollen tubes were longer than intraspecific pollen tubes. Pollen-tube lengths also differed for F1 and F2 flowers pollinated with I. fulva, I. hexagona, and hybrid pollen. For both hybrid classes I. fulva pollen tubes were the shortest while pollen tubes from I. hexagona and hybrids grew the furthest. Mixtures of genetically marked pollen were used to assess the seed siring ability of intra- and interspecific pollen in the parental species by varying the proportion of each pollen type in a replacement series design. For both species, the observed proportions of hybrid seeds were lower than the expected based on the frequency of each pollen type in the mixtures across all treatments. Flowers of I. fulva produced less than 10% hybrid progeny even when 75% of the pollen applied to stigmas was derived from interspecific flowers. The frequency of hybrid seed formation was somewhat greater in I. hexagona, but was still significantly lower than expected across all mixture treatments. Seed set per fruit remained constant across the mixture treatments for both species, but in I. fulva fruit set decreased with an increase in the proportion of interspecific pollen. The data indicate that both pre- and postfertilization processes contribute to discrimination against hybrid seed formation.  相似文献   

14.
The predominantly allopatric species of the genusPicradeniopsis, P. oppositifolia andP. woodhousei, are distinct in morphological, in phenolic and terpeniod chemical, and in cytological aspects (n = 24 andn = 12, respectively). In an area of sympatry in northeastern New Mexico, interbreeding occurs frequently with the production of morphologically intermediate hybrids. Morphological and phenolic chemical data from 191 plants in 40 isolated parental populations and from 91 plants in four hybrid populations are of limited value in determining the nature of this hybridization, but meiotic configurations of 12II and 12I and low pollen viabilities of 1–11% in the hybrids indicate that they are all of the F1 generation (with one possible backcross). The absence of observed introgression, and therefore the absence of gene flow between the two taxa, strengthens the case for taxonomic recognition of two species in the genus. Comparisons of the morphology, phenolic and terpenoid chemistry, and cytology of parents and F1 hybrids suggest that the tetraploid,P. oppositifolia, has arisen by allopolyploidy from a cross betweenP. woodhousei and an unknown diploid species. An extrapolated morphological and chemical reconstruction of this putative diploid parent is advanced.  相似文献   

15.
We studied the inheritance of survival ability in host-associated populations of the tephritid fly, Eurosta solidaginis, to test predictions of sympatric speciation models. Eurosta solidaginis induces galls on two species of goldenrod, Solidago altissima and S. gigantea. The host-associated populations have been hypothesized to be host races that originated in sympatry (Craig et al. 1993). We found evidence for disruptive selection for host use, which is a critical assumption of sympatric speciation models. Each host race had higher survival rates on their host plant than on the alternative host. F1 and backcross hybrids also had lower survival rates than the pure host-race flies on their host plant. Since assortative mating occurs due to host-plant preference (Craig et al. 1993) this would select for divergence in host preference. Low hybrid survival could have been due to strong genetic incompatibilities of the populations or due to host adaptation by each population. Strong genetic incompatibilities would result in poor survival on all host plants, while host adaptation could result in low overall survival with high hybrid survival on some host plants with particularly “benign” environments. High survival of F1, F2, and backcross hybrids on some plant genotypes in some years supported the host adaptation hypothesis. F1 flies mated and oviposited normally and produced viable F2 and backcross hybrids indicating gene flow is possible between the host races. A few flies developed and emerged on the alternative host plant. This demonstrates that genes necessary to utilize the alternative host exist in both host races. This could have facilitated the origin of one of the populations via a host shift from the ancestral host. The inheritance of survival ability appears to be an autosomal trait. We did not find evidence that survival ability was maternally influenced or sex linked.  相似文献   

16.
The character of inheritance of the morphological traits of spike and grain color and morphometric parameters of the grain in simple and backcross F1 and F2 hybrids of spelt and soft wheat has been investigated. The experiments confirmed that single homologous genes determine the trait of grain width in different species of wheat. Incomplete dominance of the gene that determines the trait of grain length has been revealed. The increase of the dosage of genes from one wheat species in a backcross hybrid has been shown to increase the deviation from the other species and to bring the values of the quantitative parameters of the grain closer to the values for the saturating species. Splitting of the spike color trait in the F2 offspring has been shown to follow the 15: 1 dihybrid cross scheme and to be controlled by two dominant homologous genes.  相似文献   

17.
Invasive bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are reproductively isolated in their native range, but form a bimodal, multigenerational hybrid swarm within the Mississippi River Basin (MRB). Despite observed F1 hybrid superiority in experimental settings, effects of postzygotic selection on bighead and silver carp hybrids have not been tested in a natural system. Individual parent and hybrid genotypes were resolved at 57 species‐specific loci and used to evaluate postzygotic selection for body condition (Wr) and female reproductive potential (presence of spawning stage gonads and gonadosomatic index [GSI]) in the MRB during 2009–2011. Body condition in the Marseilles Reach, Illinois River declined with a decrease in species‐specific allele frequency from 1.0 to 0.4 for each species and early generation hybrids (F1, F2, and first‐generation backcross) had lower mean Wr than late generation hybrids (2nd+ generation backcrosses) and parentals. Proportions of stage IV and stage V (spawning stage) female gonads differed between bighead and silver carp, but not among parentals and their early and late generation hybrids within the MRB. Mean GSI values did not differ between parentals and hybrids. Because reproductive potential did not differ between hybrids and parentals, our results suggest that early generation hybrids occur in low frequency either as a factor of poor condition (Wr) and postreproductive survival, infrequent reproductive encounters by parental bighead and silver carp, or selection pressures acting on juvenile or immature life stages. Our results suggest that a combination of genetic and environmental factors may contribute to the postzygotic success of bighead and silver carp hybrids in the Mississippi River Basin.  相似文献   

18.
Hybrid zones have long intrigued evolutionary biologists and provide a natural laboratory to explore the evolution of reproductive isolation (speciation). Molecular characterization of hybrid zone dynamics can provide insight into the strength of reproductive isolation as well as the underlying evolutionary processes shaping gene flow. Approximately one-third of darter species naturally hybridize making this species-rich North American freshwater teleost fish clade an ideal system to investigate the extent and direction of hybridization. The objective of this study was to use diagnostic microsatellite markers to calculate genetic hybrid index scores of two syntopic, but distantly related darter species, Etheostoma bison and Etheostoma caeruleum. A combination of hybrid index scores, assignment tests, and mitochondrial haplotype profiles uncovered mixed ancestry in approximately 6 % of sampled adult individuals, supporting contemporaneous hybridization that was previously undocumented in E. bison. Moreover, hybrids were not limited to the F1 generation, but encompassed the entire suite of hybrid categories (F1, F2 and backcross hybrids). The low number of hybrids assigned to each hybrid category represents a bimodal hybrid zone, suggesting reproductive isolation is strong (but incomplete) and also advocates for the ability of hybrids to produce second-generation hybrids and backcross into both parental species, mediating introgression across species boundaries. To this end, cytonuclear profiles of the sampled parental species and hybrids were consistent with bidirectional gene flow, although there was an overall trend of asymmetric hybridization between E. caeruleum females and E. bison males. The spatiotemporal variation in hybridization rates and resulting cytonuclear patterns expanded on in this study provide a comparative genetic framework on which future studies can begin to elucidate the underlying processes that not only generate a mosaic hybrid zone, but maintain the distinctness of species in the face of gene flow.  相似文献   

19.
A putative hybrid zone between flightless earabid beetles, (iambus (Ohomopterus) insulicola and C. (0.) arrowianus nakamurai in the Ina Valley, central Honshu. Japan, was studied using experimental hybridization and morphological analysis. The principal morphological character analysed was a functional part of the male genitalia (the eopulatory piece), which is also the key diagnostic character in taxonomy. The habitat of the earabid beetles is fragmented by the Tenryu River, which runs through the Ina Valley, and its tributaries. Ohomopterus insulicola and 0. a. nakamurai occur in the upstream and downstream areas of the river basin, respectively, and a putative hybrid swarm (0. insulicola ssp. pseiidinsulkola) is found in the boundary area on the cast side of the Tenryu River. Experimental hybridization between 0. insulicola and 0. a. nakamurai resulted in F1 offspring that were morphologically similar to 0. i. pseudinsulicola. Pre‐zygotic reproductive isolation was incomplete, although the F1 males had a dysfunction in sperm production and were almost sterile. Only a single F1 pair produced F2, Backcrosses of F1 females of males of the parental species resulted in offspring that were similar to the parental species in genital morphology. Based on the discriminant function for the shape of the eopulatory piece resulting from the experimental hybridization, we demonstrate that similar hybrid swarms exist on both sides of the Tenryu River, but in locations 25 km apart. This demonstrates parallelism in hybridization events with similar consequences. The hybrid swarms consisted of beetles with intermediate morphological characters and did not contain obvious parental forms. The establishment of such intermediate populations may have been facilitated by selection for fertile hybrids in segregated local sites in the absence of frequent immigration of parental species. This study suggests that a segmented river basin provides an opportunity for establishing novel evolutionary lineages resulting from hybridization.  相似文献   

20.
Long , Robert W. (Ohio Wesleyan U., Delaware.) Natural and artificial hybrids of Helianthus Maximiliani × H. grosseserratus. Amer. Jour. Bot. 46(10): 687–692. Illus. 1959.—An investigation of the occurrence of natural hybridization in two perennial sunflowers, Helianthus Maximiliani and H. grosseserratus, was begun in 1950. Subsequently, artificial F1, F2, and first and second backcross generations were produced. Fertility and vigor were high in all these plants, but F1 plants appeared to excel the others in these characteristics. Observations in the experimental garden were supplemented by examination of chromosomes in pollen mother cells, comparisons of herbarium collections, and study of wild populations. Evidence pointed to close genetic relationship of the species and to the occurrence of natural hybridization in areas of distributional overlap. In 1957 and 1958, field work in these areas resulted in the scoring of 18 natural populations, 3 of which consisted of both parental species plus putative F1 hybrids. Two explanations are offered to account for the seeming absence of introgression. The results support the conclusion that natural hybridization leads to the establishment of F1 hybrids and that introgression does not occur to any significant extent. Although both species display a high degree of interfertility, they are distinct morphologically. For this reason, it is advisable to maintain them as separate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号