首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative studies of related plant species indicate that evolutionary shifts in mating systems are accompanied by changes in reproductive attributes such as flower size, floral morphology, and pollen/ovule ratio. Recent theoretical work suggests that patterns of investment in reproduction should also change with the mating system. In a glasshouse study, we investigated the extent to which mating system differences among populations of Eichhornia paniculata (Pontederiaceae) were correlated with changes in allocation to male and female function, floral display, and the regulation of investment in reproduction through fruit and ovule abortion. Significant differences in the amount of biomass allocated to reproductive structures were evident among six populations of E. paniculata. As predicted by sex allocation theory, the proportion of dry weight allocated to male function decreased with the outcrossing rate of populations. Six of the eight attributes used to characterize floral display also differed significantly among populations. However, with the exception of two attributes describing the number of flowers produced by inflorescences, these were not correlated with outcrossing rate. Levels of fruit and ovule abortion were determined in two populations with contrasting mating systems under different nutrient and pollination treatments. Virtually all fruits initiated by plants from a self-fertilizing population were matured, while the amount of fruit abortion in an outcrossing population increased with flower production. Ovule abortion was low in both populations. Our results demonstrate that the evolution of self-fertilization in E. paniculata is associated with changes in investment to reproduction that normally distinguish selfing and outcrossing species.  相似文献   

2.
Selfing has evolved repeatedly in outcrossing taxa, and theory predicts that an increase in the level of self-fertilization should occur in concert with changes in reproductive allocation and the magnitude of inbreeding depression. Here we characterize the mating system of two sympatric congeners, Epilobium ciliatum and E. angustifolium, and compare the taxa for 1) reproductive allocation patterns and 2) the fitness consequences of self-fertilization. For E. ciliatum, autogamy rates were high, pollinator visitation was low, and electrophoresis revealed no genetic variation at 11 putative isozyme loci. For E. angustifolium, autogamy rates were low, pollinator visitation was relatively high, and electrophoresis generated an outcrossing rate estimate of t = 0.64 (SE = 0.08). The pollen/ovule ratio was ten times higher for E. angustifolium than for E. ciliatum, due to a decline in pollen production in the selfing species. The proportion of total flower biomass allocated to female function was significantly greater in E. ciliatum, while that allocated to male function and attractive structures was greater in E. angustifolium. We quantified the fitness consequences of selfing at three life stages: seed number, percent germination, and mature biomass. Relative performance (RP) measures indicated less inbreeding depression for E. ciliatum than for E. angustifolium at all stages; differences in RP between the species were significant for seed number and cumulative total, but not for germination or biomass. RP was correlated among life history stages for only one comparison, suggesting that the genetic basis of inbreeding depression differs among life history stages. Variation among maternal parents for RP was significant at almost all stages in both species, with the exception of seed number in E. ciliatum. The striking variation among maternal parents in E. angustifolium, ranging from strong inbreeding depression to strong outbreeding depression, may reflect both variation in the history of inbreeding and the long-distance migration of individuals from different populations.  相似文献   

3.
The size-dependent sex allocation model predicts that the relative resource allocation to female function often increases with plant size in animal-pollinated plants. If size effects on reproductive success vary depending on the environmental conditions, however, the size dependency may differ among populations. We tried to detect site-specific variation in size-dependent sex allocation of a monocarpic hermaphrodite with reference to light availability. Multiple flowers and fruits were sampled from the individuals of Cardiocrinum cordatum, a monocarpic understory herb, and pollen, ovule and seed production were measured with reference to the plant size in two populations. Furthermore, frequency and foraging behavior of pollinator visitation was observed. Ovule production per flower increased with plant size in both populations, while pollen production per flower increased with size only in the population under sparse canopy. Therefore, proportional allocation to male function decreased with plant size in the population under closed canopy, but did not change in the population under sparse canopy. Pollinators usually visited only one flower per plant, indicating the negligible geitonogamous pollination in this species. Although seed production under closed canopy was lower than that under sparse canopy, seed-set rate per flower and seed mass per fruit were independent of plant size in either of the populations. Size-dependent sex allocation in this species was site-specific, suggesting that not only resource storage before reproduction (i.e., plant size) but also resource availability of environment throughout the reproductive process (i.e., light availability) affect reproductive performance in this species.  相似文献   

4.
Because monocarpic perennial plants have only one reproductive opportunity in their entire life, they need to ensure offspring production. Some plants reproduce both sexually and vegetatively, and vegetative reproduction could possibly compensate for seed production. Therefore, the role and significance of these reproductive modes is likely to differ between monocarps and polycarps, which can reproduce many times. Cardiocrinum cordatum var. glehnii is a monocarpic perennial that reproduces both sexually and vegetatively (bulblet formation). Here, we investigated the characteristics and contribution to population maintenance of sexual and vegetative reproduction to reveal the significance of these two reproductive modes in this species. First, we found that bulblet formation occurred in plants after the three‐leaved rosette stage. Second, resource allocation experiments revealed that although resources were mainly invested in fruit maturation after the flowering season, resource allocation was switched from sexual reproduction to vegetative reproduction if seed production was insufficient. Third, the outcrossing rate in this species varied greatly according to the environment surrounding the population. However, reproductive assurance by selfing kept seed production stable even if flowers did not receive sufficient pollen for full seed set via outcross pollination, and moreover, there was no intensive inbreeding depression. Finally, genotypic identification of ramets suggested that daughter ramets derived from vegetative reproduction received the space that the mother flowering ramet had occupied until the previous year.  相似文献   

5.
Reproductive traits are crucial for the establishment and maintenance of populations in new areas, and therefore for the invasion process. This work aimed to study the reproductive biology of four aggressive invasive Australian Acacia spp. in Portugal. Fruit and seed set, seed weight and germinability, and seedling growth were assessed for self‐ and outcross treatments in invasive populations of A. dealbata, A. longifolia, A. melanoxylon and A. saligna. Acacia spp. showed different investments in the production of reproductive units and in natural reproductive success, with A. dealbata, the most aggressive species, having the highest investment and reproductive success. Acacia melanoxylon showed a different reproductive strategy, andromonoecy, contrasting with the other hermaphroditic species. Acacia spp. were shown to be predominantly self‐incompatible, but a low level of spontaneous selfing enabled the production of viable offspring. Acacia dealbata and A. longifolia suffered pollen limitation. Self‐progeny had lower viability than progeny from outcrossing for A. dealbata and A. melanoxylon. Acacia spp. did not show higher compatibility rates in comparison with the native area. They had low fruit set but, as a result of their massive flower production, their realized reproductive success was high and could have contributed to the invasion. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 574–588.  相似文献   

6.
In natural plant communities, reproductive allocation can be affected by complex interactions among abiotic resources, species competition and plant size. This topic was addressed using a variety of designed mixed stands of five species (Carex elata, Carex flava, Lycopus europaeus, Lysimachia vulgaris and Mentha aquatica) under four abiotic conditions to investigate how competition and abiotic resources influence the reproductive allocation of one of the five species, C. flava. The plant mixtures varied systematically in both the relative abundance of the five species and the absolute density, and were each established with two levels of water and nutrients. In total, 176 mixtures were maintained for two growing seasons in large pots in an experimental garden. Reproductive allocation of C. flava increased from 6.8% to 9.7% under high nutrient application; however, for both nutrient levels, reproductive allocation was independent of shoot mass (size-independent allocation). Under low competition, reproductive allocation of C. flava decreased as its shoot mass increased, indicating a relatively high investment in vegetative structures under higher light availability. However, under strong competition, the allocation pattern changed and a constant reproductive allocation for different plant sizes was observed. Different water levels did not influence the shoot mass, seed mass or reproductive allocation of C. flava, indicating that the species was not stressed under dryer conditions. When under competitive pressure, however, the species responded with reduced shoot and seed production under more favourable water conditions. This behaviour indicates a trade-off between the ability to tolerate stress and the competitive and reproductive response of C. flava. In conclusion, C. flava was adversely affected by competition with some of the species, and competition, mediated by plant size, indirectly affected reproductive allocation. C. flava was able to modify its allocation pattern depending on the available resources and retained its reproductive allocation even under unfavourable conditions for varying plant sizes, which is interpreted as an advantageous reaction to greater competition pressure. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Reproductive characteristics of three sympatric species of Gentiana exhibiting perennial and non-perennial life histories were studied in alpine meadows of the White Mountains of California during three consecutive years. High fruit and seed set and the production of a relatively large number of seeds characterized the alpine biennials, Gentiana tenella and G. prostrata. In contrast, fruit and seed set were considerably reduced and yearly seed production was relatively low in the alpine perennial, G. newberryi. Successful seed production in the biennial species was a result of low rates of flower predation, self-pollination, and the allocation of a comparatively high proportion of biomass to reproductive structures. Seed production in the perennial species was limited by high rates of flower predation, insufficient amounts of pollen reaching stigmas, an unusually late flowering period, and by the relatively small proportion of biomass allocated to reproduction.  相似文献   

8.
Sexual selection should cause sex differences in patterns of resource allocation. When current and future reproductive effort trade off, variation in resource acquisition might further cause sex differences in age‐dependent investment, or in sensitivity to changes in resource availability over time. However, the nature and prevalence of sex differences in age‐dependent investment remain unclear. We manipulated resource acquisition at juvenile and adult stages in decorated crickets, Gryllodes sigillatus, and assessed effects on sex‐specific allocation to age‐dependent reproductive effort (calling in males, fecundity in females) and longevity. We predicted that the resource and time demands of egg production would result in relatively consistent female strategies across treatments, whereas male investment should depend sharply on diet. Contrary to expectations, female age‐dependent reproductive effort diverged substantially across treatments, with resource‐limited females showing much lower and later investment in reproduction; the highest fecundity was associated with intermediate lifespans. In contrast, long‐lived males always signalled more than short‐lived males, and male age‐dependent reproductive effort did not depend on diet. We found consistently positive covariance between male reproductive effort and lifespan, whereas diet altered this covariance in females, revealing sex differences in the benefits of allocation to longevity. Our results support sex‐specific selection on allocation patterns, but also suggest a simpler alternative: males may use social feedback to make allocation decisions and preferentially store resources as energetic reserves in its absence. Increased calling effort with age therefore could be caused by gradual resource accumulation, heightened mortality risk over time, and a lack of feedback from available mates.  相似文献   

9.
Summary Patterns of resource allocation in the dioecious Rumex acetosa and R. acetosella were investigated. Males were found to allocate more to reproduction during flower production than females, whereas females invested considerably more in reproduction during seed production. Altogether, females allocated both a higher total amount and a higher proportion of energy to reproduction than did males. By regression analysis, the influence of plant size on reproductive effort was examined separately for males and females. The results indicated that while reproductive effort is sometimes lower for tall plants than for small plants, size-independent effects have a greater influence on reproductive effort than size distribution. An analysis of variance was conducted to investigate the effects of population, season, sex and their interactions on plant size, and an analysis of covariance was used to study differences in resource allocation patterns. Different interaction effects were found to be most important in the two species of Rumex.  相似文献   

10.
In habitats where resource availability declines during the growing season, selection may favor early‐flowering individuals. Under such ephemerally favorable conditions, late‐blooming species (and individuals) may be particularly vulnerable to resource limitation of seed production. In California, a region prone to seasonal drought, members of the annual genus Clarkia are among the last to flower in the spring. We compared pollen limitation (PL) of seed set and outcrossing rates between early‐ and late‐flowering individuals in two mixed‐mating Clarkia taxa to detect whether flowering time is associated with changes in seed set due to resource depletion, PL, or increased selfing. In 2008–2010, we hand‐pollinated one flower on a total of 1855 individual plants either Early (near the onset of flowering) or Late (near the end of flowering) in the flowering season and compared seed set to adjacent, open‐pollinated flowers on the same stem. To assess the contribution of pollen quality to reproduction, we first (2008) used allozymes to estimate outcrossing rates of seeds produced by Early and Late open‐pollinated flowers. Second (2009), we conducted an anther‐removal experiment to estimate self‐pollen deposition. Seed set in Clarkia unguiculata was not pollen‐limited. Clarkia xantiana ssp. xantiana was pollen‐limited in 2008 and 2010, but not 2009. PL did not differ between Early and Late treatments. In both taxa, seed set of Early flowers was greater than Late flowers, but not due to PL in the latter. Reproduction was generally pollinator‐dependent. Most pollen deposition was xenogamous, and outcrossing rates were >0.7 – and similar between Early and Late periods. These results suggest that pollen receipt and pollen quality remain seasonally consistent. By contrast, the resources necessary to provision seeds decline, reducing the fitness benefits associated with resource allocation to ovules.  相似文献   

11.
Many sessile, suspension‐feeding marine invertebrates mate by spermcasting: aquatic sperm are spawned and gathered by conspecific individuals to fertilize eggs that are generally retained during development. In two phylogenetically distant examples, a cheilostome bryozoan and an aplousobranch ascidian, the receipt of allosperm has previously been shown to alter sex allocation by triggering female investment in eggs and brooding. Here we report experiments demonstrating that two species of cyclostome bryozoan also show restrained female investment in the absence of mating opportunity. In Tubulipora plumosa, the production of female zooids and progeny is much reduced in reproductive isolation. In Filicrisia geniculata, development of distinctive female zooids (gonozooids) begins but halts in the absence of mating opportunity, and no completed gonozooids or progeny result. Reduced female investment in the absence of a mate thus occurs in at least two orders of Bryozoa, but significant differences in detail exist and the evolutionary history within the phylum of the mechanism(s) by which female investment is initiated might be complex. The broadening taxonomic spectrum of examples where female investment appears restrained until allosperm becomes available may signify a general adaptive strategy among outcrossing modular animals, analogous to similarly adaptive sex allocation typical of many flowering plants.  相似文献   

12.
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function – seed production – did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.  相似文献   

13.
毛翠雀花花序内的性分配和繁殖成功   总被引:1,自引:0,他引:1  
张新  安宇梦  史长莉  米兆荣  张婵 《广西植物》2021,41(8):1324-1332
两性花植物花序内不同位置的性分配和繁殖成功一般存在差异,通常认为资源竞争、结构效应和交配环境是形成这种差异的主要原因。为了研究雄性和雌性繁殖资源在花序内不同位置间的最优分配问题,该文以青藏高原高寒草甸典型高山植物毛翠雀花为材料,通过比较花序内不同位置的花部特征和种子性状,对其花序内的性分配模式和雌性繁殖成功进行研究,并通过观察传粉者运动特点以及人工去花和补授花粉实验,探讨花序内资源竞争和交配环境对繁殖资源分配的影响。结果表明:(1)不同位置间的雄蕊数、雄蕊鲜重/雌蕊鲜重、花粉数及花粉胚珠比从花序基部到上部显著增加,而雌蕊鲜重和胚珠数逐渐减少,表现出上部花偏雄的性分配;上部花的结籽率显著低于基部花和中部花,不同位置间的发育种子数/果实和发育种子重/果实随着花位置的升高而显著降低,说明基部花具有更佳的雌性繁殖成效。(2)去花处理后,剩余果实的单个种子重/果实显著增加,但发育种子数/果实没有显著增加;而给上部花人工补授异花花粉后,位置间结籽率的差异消失,说明传粉限制而非资源竞争导致了花序内位置依赖的种子生产模式。(3)毛翠雀花雄性先熟的开花特征,以及传粉者苏氏熊蜂从花序基部到上部的定向访花行为,导致了花序内交配环境的变化。综上结果表明,毛翠雀花花序内的性分配和繁殖成功差异是对交配环境适应的结果,对其在高山环境中实现雌雄适合度最优化具有重要意义。  相似文献   

14.
Patterns of resource allocation reflect the plastic strategies that result from different selective pressures imposed by the environment. However, biomass allocation can be limited by architectural restrictions that change with the plant size. Our knowledge about sex allocation in heterosporous aquatic ferns remains scarce and studies on the reproductive strategies of these plants may yield valuable information regarding the evolutionary history of heterospory. Here, we investigate resources allocation, both in number and in biomass, to produce megasporangia and microsporangia among three species of Salvinia with different body sizes. Salvinia oblongifolia, S. auriculata and S. minima were collected in temporary ponds on the floodplain of the Pandeiros River in Brazil. We counted megasporangia and microsporangia, and measured their dry mass in each ramet. We also measured the total vegetative biomass and total reproductive biomass of each ramet in each species. Resource allocation to megasporangia production is associated with the specific body size of each species. However, the allocation for microsporangia production was higher in the species with intermediate size, which probably may be related to the drought event. The total reproductive biomass of each species was not dependent on the total vegetative biomass, but despite a similar reproductive effort, species differ on which sex is prioritized in the allocation process. Our results provide the first data about the processes underlying the sex allocation of Salvinia in the floodplains. The production of sori is size dependent in each Salvinia species and is shaped by drought, an intense selective pressure in temporary wet habitats.  相似文献   

15.
The resource allocation for vegetative growth and female reproduction in three tree species of subgenus Cyclobalanopsis (Quercus, Fagaceae), i.e., Q. salicina, Q. sessilifolia, and Q. acuta, were examined on a per-individual basis in two consecutive reproductive seasons, in order to test whether these trees fit the predictions of the masting hypotheses about resource matching versus resource switching. Since the three Quercus species have a biennial fruiting habit, it takes 3 years for the observation of two reproductive events. Female flower and acorn production per tree were investigated by using a seed-trap method and a numerical analysis of seed dispersal. The net production of each individual was estimated as the sum of the annual increase in the dry mass of vegetative organs and reproductive investment per tree. In the data analyses, the three species were pooled, since all 12 sample trees of the subgenus apparently showed masting in the same year, with no exceptions. Female flower and acorn production per individual tree changed considerably between years. The net production per tree increased with tree size, but did not differ between years. Therefore, the reproductive allocation (proportion of a plant’s annual assimilated resources which are used for reproduction) differed dramatically between years. On the other hand, within a year, the reproductive allocation increased with increasing net production per tree. These results suggest that the switching of resource allocation between years within an individual are occurring in subgenus Cyclobalanopsis species, and the intensity of the switching increases with increasing tree size.  相似文献   

16.
In wind‐pollinated plants, male‐biased sex allocation is often positively associated with plant size and height. However, effects of size (biomass or reproductive investment) and height were not separated in most previous studies. Here, using experimental populations of monoecious plants, Ambrosia altemisiifolia, we examined (1) how male and female reproductive investments (MRI and FRI) change with biomass and height, (2) how MRI and height affect male reproductive success (MRS) and pollen dispersal, and (3) how height affects seed production. Pollen dispersal kernel and selection gradients on MRS were estimated by 2,102 seeds using six microsatellite markers. First, MRI increased with height, but FRI did not, suggesting that sex allocation is more male‐biased with increasing plant height. On the other hand, both MRI and FRI increased with biomass but often more greatly for FRI, and consequently, sex allocation was often female‐biased with biomass. Second, MRS increased with both height and MRI, the latter having the same or larger effect on MRS. Estimated pollen dispersal kernel was fat‐tailed, with the maximum distance between mates tending to increase with MRI but not with height. Third, the number of seeds did not increase with height. Those findings showed that the male‐biased sex allocation in taller plants of A. artemisiifolia is explained by a direct effect of height on MRS.  相似文献   

17.
Although theoretical models predict low allocation to attractive structures with increased selfing in animal-pollinated plants, empirical measurement of the reproductive costs and benefits is complicated. Here, floral sex allocation was compared in two nectarless heterandrous species with different mating systems: Monochoria korsakowii (Pontederiaceae), which has moderate outcrossing rates, and Monochoria vaginalis, a predominant selfer. In both species, mirror-image flowers have one large dark-purple anther and five small yellow anthers. Experimental evidence is provided for functional differences between the two sets of anthers using data on pollinator visitation, pollen removal and deposition, and seed set after hand pollinations. Flower manipulations in bee-pollinated M. korsakowii demonstrated different functions of the two sets of anthers: the yellow (feeding) anthers function to attract pollinators, but have similar pollen performance to the purple (pollinating) anthers. Furthermore, a disproportional reduction in pollen production of the feeding anthers in the selfing species was found. This differential allocation between feeding and pollinating anthers in heterandrous species has not been recognized before. The finding of reduced allocation to attractive structures with an increase in the rate of self-fertilization supports the theory of sex allocation.  相似文献   

18.
Most models of mating-system evolution predict inbreeding depression to be low in inbred populations due to the purging of deleterious recessive alleles. This paper presents estimates of outcrossing rates and inbreeding depression for two highly selfing, monoecious annuals Begonia hirsuta and B. semiovata. Outcrossing rates were estimated using isozyme polymorphisms, and the magnitude of inbreeding depression was quantified by growing progeny in the greenhouse produced through controlled selfing and outcrossing. The estimated single-locus outcrossing rate was 0.03 ± 0.01 (SE) for B. hirsuta and 0.05 ± 0.02 for B. semiovata. In both species, the seed production of selfed flowers was on average 12% lower than that of outcrossed flowers (B. hirsuta P = 0.07, B. semiovata P < 0.05, mixed model ANOVAs). There was no significant effect of crosstype on germination rate or survival, but selfed offspring had a lower dry mass than outcrossed offspring 18 weeks after planting in both species (on average 18% lower in B. hirsuta and 31% lower in B. semiovata). Plants that were the products of selfing began flowering later than plants produced through outcrossing in B. semiovata, but not in B. hirsuta. The effects of crosstype on seed production (B. semiovata), days to first flower and offspring dry mass (both species) varied among maternal parents, as indicated by significant crosstype x maternal parent interactions for these characters. Both species showed significant inbreeding depression for total fitness (estimated as the product of seed production, germination rate, survival and dry mass at 18 weeks). In B. hirsuta, the average total inbreeding depression was 22% (range -57%-98%; N = 23 maternal parents), and in B. semiovata, it was 42% (-11%-84%; N = 21). This study demonstrates that highly selfing populations can harbor substantial inbreeding depression. Our findings are consistent with the hypothesis that a high mutation rate to mildly deleterious alleles contributes to the maintenance of inbreeding depression in selfing populations.  相似文献   

19.
Mathematical models estimated that xenogamy accounted for 7% and 35% of the stigmatic pollen loads of Ipomoea hederacea and I. purpurea, respectively, in experimental populations. The xenogamy estimate for I. hederacea agreed closely with outcrossing estimates previously reported for this species. The discrepancy between the xenogamy estimate and the previously reported outcrossing estimate for I. purpurea could be explained by differing pollinator flight patterns between experimental and natural populations and/or by selection for cross pollen in the pistil of I. purpurea. Interspecific pollen flow from I. purpurea to emasculated flowers of I. hederacea reduced seed production in the latter. The possible significance of interspecific pollen flow from I. purpurea for the evolution of autogamy in I. hederacea was discussed.  相似文献   

20.
Characters related to sex allocation and the mating system were studied in eight California taxa of the Mimulus guttatus complex: M. guttatus, M. nasutus, M. glaucescens, M. Tilingii, M. nudatus, M. laciniatus, M. platycalyx, and M. micranthus, ranked in approximate decreasing levels of outbreeding. Dry weights and lengths of floral parts, pollen and ovule number, and timing of stigmatic closure were measured on plants in the growth chamber. As percent of total flower weight, allocation to stamens and corollas was lowest in M. micranthus (28%), intermediate in M. platycalyx, M. Tilingii, and M. laciniatus (50%), and high in other taxa (60%). Among M. micranthus, M. platycalyx, and M. laciniatus, pollen–ovule ratios ranged from 3.9 to 12.0; ratios for other taxa were 19.3 to 26.6. Taxa with increased male biomass allocation generally show increased outcrossing and increased P/O ratios. Stigma-anther separation and closure of stigma lobes upon touch were positively correlated with outcrossing ratios, P/O ratios, and male allocation. Isozyme variation indicates the inbreeding taxa have been independently derived; thus, these associations of maleness with outbreeding are significant trends in the Mimulus guttatus complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号