首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryptic sex has been argued to explain the exceptional longevity of certain parthenogenetic vertebrate lineages, yet direct measurements of genetic exchange between sexual and apparently parthenogenetic forms are rare. Female unisexual mole salamanders (Ambystoma sp.) are the oldest known unisexual vertebrate lineage (~5 million years), and one hypothesis for their persistence is that allopolyploid female unisexuals periodically exchange haploid genomes ‘genome exchange’ during gynogenetic reproduction with males from sympatric sexual species. We test this hypothesis by using genome‐specific microsatellite DNA markers to estimate the rates of genome exchange between sexual males and unisexual females in two ponds in NE Ohio. We also test the prediction that levels of gene flow should be higher for ‘sympatric’ (sexual males present) genomes in unisexuals compared to ‘allopatric’ (sexual males absent) unisexual genomes. We used a model testing framework in the coalescent‐based program MIGRATE‐N to compare models where unidirectional gene flow is present and absent between sexual species and unisexuals. As predicted, our results show higher levels of gene flow between sexuals and sympatric unisexual genomes compared to lower (likely artefactual) levels of gene flow between sexuals and allopatric unisexual genomes. Our results provide direct evidence that genome exchange between sexual and unisexual Ambystoma occurs and demonstrate that the magnitude depends on which sexual species are present. The relatively high levels of gene flow suggest that unisexuals must be at a selective advantage over sexual forms so as to avoid extinction due to genetic swamping through genome exchange.  相似文献   

2.
Naturally occurring unisexual reproduction has been documented in less than 0.1% of all vertebrate species. Among vertebrates, true parthenogenesis is known only in squamate reptiles. In all vertebrate cases that have been carefully studied, the clonal or hemiclonal taxa have originated through hybridization between closely related sexual species. In contrast, parthenogenetic reproduction has arisen in invertebrates by a variety of mechanisms, including likely cases of “spontaneous” (nonhybrid) origin, a situation not currently documented in natural populations of vertebrates. Here, we present molecular data from the Neotropical night lizard genus Lepidophyma that provides evidence of independent nonhybrid origins for diploid unisexual populations of two species from Costa Rica and Panama. Our mitochondrial and nuclear phylogenies are congruent with respect to the unisexual taxa. Based on 14 microsatellite loci, heterozygosity (expected from a hybrid origin) is low in Lepidophyma reticulatum and completely absent in unisexual L. flavimaculatum. The unique value of this system will allow direct comparative studies between parthenogenetic and sexual lineages in vertebrates, with an enormous potential for this species to be a model system for understanding the mechanisms of nonhybrid parthenogenesis.  相似文献   

3.
The twofold advantage of all-female reproduction is limited in many asexual lineages because females are sperm-dependent. Males of a related sexual-host species typically prefer conspecific females as mates. According to the “sexual mimicry” hypothesis, an all-female lineage that closely resembles females of the sexual-host species should have enhanced mating success. Examination of mating success in all-female fish of the genus Poeciliopsis supported this hypothesis. The excellent sexual mimicry of some all-female strains could have evolved through mutations within clonal lineages subsequent to their origins as interspecific hybrids. Alternatively, this mimicry may have been “frozen” from variation in the sexual gene pool when new unisexual lineages first arose. To test the latter hypothesis, we examined laboratory synthesized strains of the hybridogenetic fish P. monacha-lucida. The frozen variation hypothesis was supported by the present results.  相似文献   

4.
Restriction-endonuclease analysis of mitochondrial DNA (mtDNA) of the unisexual M. clarkhubbsi complex and close sexual relatives indicated that the unisexual complex arose through multiple, nonreciprocal hybridizations involving females of M. peninsulae. High-resolution analyses using restriction endonucleases that cleave at 4-bp sites revealed mtDNA sequence diversity that was low among unisexuals but high among individuals of M. peninsulae. The identification of M. peninsulae as a parent of the unisexuals conflicts with some details of previous allozyme comparisons. One possibility is that the unisexuals were derived from hybridization involving M. beryllina and a recently extinct form of M. peninsulae. In contrast to the unisexuals, contemporary hybrids of M. peninsulae and M. beryllina are formed by reciprocal matings. The origins of extant unisexual lineages from nonreciprocal hybridizations, together with their low mtDNA diversity relative to the maternal ancestor, implies strong constraints on origins of unisexuality via hybridization. Data on reproduction by contemporary F1 hybrids reveal one form of genetic/developmental constraint: M. peninsulae and M. beryllina may now have diverged beyond the point where the hybrid origin of new unisexual lineages is possible.  相似文献   

5.
To persist, unisexual and asexual eukaryotes must have reproductive modes that circumvent normal bisexual reproduction. Parthenogenesis, gynogenesis, and hybridogenesis are the modes that have generally been ascribed to various unisexuals. Unisexual Ambystoma are abundant around the Great Lakes region of North America, and have variously been described as having all 3 reproductive modes. Diploid and polyploid unisexuals have nuclear genomes that combine the haploid genomes of 2 to 4 distinct sexual species, but the mtDNA is unlike any of those 4 species and is similar to another species, Ambystoma barbouri. To obtain better resolution of the reproductive mode used by unisexual Ambystoma and to explore the relationship of A. barbouri to the unisexuals, we sequenced the mitochondrial control and highly variable intergenic spacer region of 48 ambystomatids, which included 28 unisexuals, representatives of the 4 sexual species and A. barbouri. The unisexuals have similar sequences over most of their range, and form a close sister group to A. barbouri, with an estimated time of divergence of 2.4-3.9 million years ago. Individuals from the Lake Erie Islands (Kelleys, Pelee, North Bass) have a haplotype that demonstrates an isolation event. We examined highly variable microsatellite loci, and found that the genetic makeup of the unisexuals is highly variable and that unisexual individuals share microsatellite alleles with sexual individuals within populations. Although many progeny from the same female had the same genotype for 5 microsatellite DNA loci, there was no indication that any particular genome is consistently inherited in a clonal fashion in a population. The reproductive mode used by unisexual Ambystoma appears to be unique; we suggest kleptogenesis as a new unisexual reproductive mode that is used by these salamanders.  相似文献   

6.
Lu  Meng  Li  Xi-Yin  Li  Zhi  Du  Wen-Xuan  Zhou  Li  Wang  Yang  Zhang  Xiao-Juan  Wang  Zhong-Wei  Gui  Jian-Fang 《中国科学:生命科学英文版》2021,64(1):77-87
Polyploids in vertebrates are generally associated with unisexual reproduction, but the direct consequences of polyploidy on sex determination system and reproduction mode remain unknown. Here, we synthesized a group of artificial octoploids between unisexual gynogenetic hexaploid Carassius gibelio and sexual tetraploid Carassius auratus. The synthetic octoploids were revealed to have more than 200 chromosomes, in which 50 chromosomes including the X/Y sex determination system were identified to transfer from sexual tetraploid C. auratus into the unisexual gynogenetic hexaploid C. gibelio. Significantly, a few synthetic octoploid males were found to be fertile, and one octoploid male was confirmed to regain sexual reproduction ability,which exhibits characteristics that are the same to sexual reproduction tetraploid males, such as 1:1 sex ratio occurrence, meiosis completion and euploid sperm formation in spermatogenesis, as well as normal embryo development and gene expression pattern during embryogenesis. Therefore, the current finding provides a unique case to explore the effect of sex determination system incorporation on reproduction mode transition from unisexual gynogenesis to sexual reproduction along with genome synthesis of recurrent polyploidy in vertebrates.  相似文献   

7.
Synopsis There are four members involved in the breeding complexes of poeciliid fishes found in the freshwaters of northeastern Mexico: males and females of a bisexual species, and diploid and triploid unisexuals. Both unisexuals reproduce by gynogenesis, i.e., an asexual type of reproduction where the sperm triggers egg development but the male genome is excluded to produce clonal offspring. The three types of females are closely related, which suggests that they are potential competitors since all three require the service of the same males. The potential for competition is compounded by a highly skewed sex ratio in favor of females. On the average the unisexuals comprise about 30% of the Poecilia females. This high frequency coupled with a close genetic relatedness to their bisexual hosts, raises the question of how the unisexuals are maintained in nature.Other investigators who work with bisexual/unisexual complexes in the related genus, Poeciliopsis, have postulated that male dominance hierarchies are responsible for restricting the access of subordinate males to their conspecific females. Consequently, these subordinate males mate with unisexual females. The current report tests whether or not this hypothesis applies to bisexual/unisexual complexes of Poecilia.We have found that linear dominance hierarchies appear to function in the defense of home ranges and do not restrict access of males to females. Dominant males exhibit less mating activity than subordinate males towards females. Previous reports showed that males are reproductively competent throughout the year, whereas females show striking asynchrony in their reproductive readiness. Such asynchrony limits the proportion of receptive females at any one time. Consequently, there are more males ready to mate than there are females receptive to their mating attempts. This may lead to mating frenzies. We postulate that these indiscriminate matings maintain the fertility of both unisexuals. When the relative reproductive outputs of adult females are compared, both unisexuals appear as fit as their bisexual congeners.  相似文献   

8.
Freshwater ostracodes show both an exceptionally high incidence of transitions to unisexuality and, in some cases, an extraordinary level of clonal diversity. There is no understanding of the agents promoting these transitions to thelytoky, although it has been suggested that their frequency may set the stage for sexual taxa to infuse clonal diversity into unisexuals. This study examines the nature and origins of clonal diversity in the unisexual ostracode Cyprinotus incongruens. A combination of allozyme and cytogenetic studies revealed the presence of two diploid clones of this species at three temperate sites and ten clones at one arctic site including three diploids, five triploids, and two tetraploids. The low heterozygosity (0%–20%) of its diploid clones suggests that parthenogenesis has arisen spontaneously in C. incongruens rather than through hybridization, as in vertebrate asexuals. Polyploid clones appear to owe their origin to genome additions from sexual taxa, although subsequent mutational divergence has played a role in further enhancing diversity. Two triploid clones have apparently originated from the incorporation of a haploid genome from the sexually reproducing C. glaucus, as evidenced by their high heterozygosity and possession of alleles otherwise found only in that species. Other polyploid clones have likely arisen as a result of interbreeding between bisexual and unisexual C. incongruens. These results suggest that both the incidence of spontaneous transitions to clonality and the frequency of interbreeding with relatives may be the key processes that govern clonal diversity in unisexual ostracodes.  相似文献   

9.
Despite the advantage of avoiding the costs of sexual reproduction, asexual vertebrates are very rare and often considered evolutionarily disadvantaged when compared to sexual species. Asexual species, however, may have advantages when colonizing (new) habitats or competing with sexual counterparts. They are also evolutionary older than expected, leaving the question whether asexual vertebrates are not only rare because of their 'inferior' mode of reproduction but also because of other reasons. A paradigmatic model system is the unisexual Amazon molly, Poecilia formosa, that arose by hybridization of the Atlantic molly, Poecilia mexicana, as the maternal ancestor, and the sailfin molly, Poecilia latipinna, as the paternal ancestor. Our extensive crossing experiments failed to resynthesize asexually reproducing (gynogenetic) hybrids confirming results of previous studies. However, by producing diploid eggs, female F(1) -hybrids showed apparent preadaptation to gynogenesis. In a range-wide analysis of mitochondrial sequences, we examined the origin of P. formosa. Our analyses point to very few or even a single origin(s) of its lineage, which is estimated to be approximately 120,000 years old. A monophyletic origin was supported from nuclear microsatellite data. Furthermore, a considerable degree of genetic variation, apparent by high levels of clonal microsatellite diversity, was found. Our molecular phylogenetic evidence and the failure to resynthesize the gynogenetic P. formosa together with the old age of the species indicate that some unisexual vertebrates might be rare not because they suffer the long-term consequences of clonal reproduction but because they are only very rarely formed as a result of complex genetic preconditions necessary to produce viable and fertile clonal genomes and phenotypes ('rare formation hypothesis').  相似文献   

10.
Clonal reproduction in vertebrates can always be traced back to hybridization events as all known unisexual vertebrates are hybrids between recognized species or genetically defined races. Interestingly, clonal vertebrates often also rely on interspecific matings for their reproduction because gynogenesis (sperm-dependent parthenogenesis) and hybridogenesis are common modes of propagation. While in most cases these hybridization events leave no hereditary traces in the offspring, occasionally the genome exclusion mechanism fails and either small parts of male genetic material remain inside the oocyte in the form of microchromosomes, or fusion of the sperm nucleus with the oocyte nucleus leads to polyploid individuals. In this review, we highlight the important role of hybridization for the origin and evolution of a unisexual hybrid: the Amazon molly, Poecilia formosa.  相似文献   

11.
Unisexual salamanders in the genus Ambystoma (Amphibia, Caudata) are endemic to eastern North America and are mostly all-female polyploids. Two to four of the bisexual species, A. laterale, A. jeffersonianum, A. texanum and A. tigrinum, contribute to the nuclear genome of unisexuals and more than 20 combinations that range from diploid to pentaploid have been identified in this complex. Because the karyotypes of the four bisexual species are similar, homologous and homoeologous chromosomes in the unisexuals can not be distinguished by conventional or banded karyotypes. We chose two widespread unisexual genomic combinations (A.laterale-2 jeffersonianum [or LJJ] and A. 2 laterale-jeffersonianum [or LLJ]) and employed genomic in situ hybridization (GISH) to identify the genomes in these unisexuals. Under optimum conditions, GISH reliably distinguishes the respective chromosomes attributed to both A.laterale and A. jeffersonianum. Of four populations examined, two were found to have independently evolved homoeologous recombinants that persist in both LJJ and LLJ individuals. Our results refute the previous hypothesis of clonal integrity and independent evolution of the genome combinations in these unisexuals. Our data provide evidence for intergenomic interactions between maternal chromosomes during meiosis in unisexuals and help to explain previously observed non-homologous bivalents and/or quadrivalents among lampbrush chromosomes that were possibly initiated by partial homosequential pairing among the homo(eo)logues. To explore the utility of GISH in other members of the complex, probes developed from A. laterale were also applied to unisexuals that contained A. tigrinum and A. texanum genomes. GISH is an effective tool that can be used to identify and to quantify genomic constituents and to investigate intergenomic interactions in unisexual salamanders. GISH also has potential application to examine possible genomic evolution in other unisexuals.  相似文献   

12.
Diploid-triploid mosaics are rarely found in vertebrates, and until now they were known to be common in only two vertebrate species complexes. Here we report that diploid-triploid mosaics are widespread among unisexual hybrids of the minnows Phoxinus eos and Phoxinus neogaeus, a complex already known to contain diploid and triploid forms. Using chromosome counts and flow cytometry, we show that the mosaics occur throughout the known range of the unisexuals and are abundant in many of these natural populations. The mosaics are highly heterogeneous, showing individual variation in the ratio of diploid to triploid cells, and as a group they appear to form a continuum between the pure diploid and triploid forms. Tissue-graft analysis shows that the third genome present in the triploid cells of a mosaic is expressed, because grafts made from the mosaics show an incidence of rejection intermediate between that of the diploid (clonal) and triploid (nonclonal) biotypes.  相似文献   

13.
As currently diagnosed, Nactus arnouxii includes unisexual and bisexual populations. The geographic distribution of each type was estimated by sex-ratio analysis of samples from southwestern Pacific islands. Males were absent from southern Vanuatu (excluding Aneityum), New Caledonia, and all islands to the east that have been sampled. Both types of populations appear to be present on Aneityum. Chromosome and protein analyses showed that the bisexual populations are highly polytypic and probably consist of more than one biological species. The unisexual N. arnouxii were diploid, highly heterozygous, and showed no genetic segregation. The absence of segregation suggests clonal reproduction, substantiating parthenogenesis. The high heterozygosity of the unisexuals indicates their origin through hybridization. One parent was genetically similar to the extant bisexual population from northern Vanuatu. The other parent has not been identified, but its genetic characteristics are predicted by phylogenetic analysis.  相似文献   

14.
The rarity of eukaryotic asexual reproduction is frequently attributed to the disadvantage of reduced genetic variation relative to sexual reproduction. However, parthenogenetic lineages that evolved repeatedly from sexual ancestors can generate regional pools of phenotypically diverse clones. Various theories to explain the maintenance of this genetic diversity as a result of environmental and spatial heterogeneity [frozen niche variation (FNV), general-purpose genotype] are conceptually similar to community ecological explanations for the maintenance of regional species diversity. We employed multivariate statistics common in community ecological research to study population genetic structure in the freshwater crustacean, Daphnia pulex × pulicaria. This parthenogenetic hybrid arose repeatedly from sexual ancestors. Daphnia pulex × pulicaria populations harboured substantial genetic variation among populations and the clonal composition at each pond corresponded to nutrient levels and invertebrate predator densities. The interclonal selection process described by the FNV hypothesis likely structured our D. pulex × pulicaria populations.  相似文献   

15.
The frozen-niche-variation model was proposed to account for the coexistence of genetically related clones in naturally occurring unisexual populations. This model is based on two assumptions: 1) ecologically different clones have multiple independent origins from sexual ancestors; and 2) the population of sexual ancestors contains genetic variability for ecologically relevant traits. To test these assumptions, we produced 14 new “hemiclones” (nonrecombining haploid genotypes) of fish (Poeciliopsis: Poeciliidae). Our ability to synthesize many new hemiclones demonstrates the feasibility of multiple independent origins of nonrecombining genotypes. A substantial proportion (10–50%) of the phenotypic variation among hemiclones in size at birth, juvenile growth rate, and fecundity had a genetic basis. Thus, we conclude that multiple origins can give rise to an assemblage of genetically distinct hemiclones, each with a unique combination of life-history traits. Additionally, a comparative analysis of two natural hemiclones revealed that the synthetic strains represent a broad field of variation from which natural hemiclones can be selected.  相似文献   

16.
Unisexual vertebrates typically form through hybridization events between sexual species in which reproductive mode transitions occur in the hybrid offspring. This evolutionary history is thought to have important consequences for the ecology of unisexual lineages and their interactions with congeners in natural communities. However, these consequences have proven challenging to study owing to uncertainty about patterns of population genetic diversity in unisexual lineages. Of particular interest is resolving the contribution of historical hybridization events versus post formational mutation to patterns of genetic diversity in nature. Here we use restriction site associated DNA genotyping to evaluate genetic diversity and demographic history in Aspidoscelis laredoensis, a diploid unisexual lizard species from the vicinity of the Rio Grande River in southern Texas and northern Mexico. The sexual progenitor species from which one or more lineages are derived also occur in the Rio Grande Valley region, although patterns of distribution across individual sites are quite variable. Results from population genetic and phylogenetic analyses resolved the major axes of genetic variation in this species and highlight how these match predictions based on historical patterns of hybridization. We also found discordance between results of demographic modelling using different statistical approaches with the genomic data. We discuss these insights within the context of the ecological and evolutionary mechanisms that generate and maintain lineage diversity in unisexual species. As one of the most dynamic, intriguing, and geographically well investigated groups of whiptail lizards, these species hold substantial promise for future studies on the constraints of diversification in unisexual vertebrates.  相似文献   

17.
Kevin C. Roach  Joseph Heitman 《Genetics》2014,198(3):1059-1069
Cryptococcus neoformans is a pathogenic basidiomycetous fungus that engages in outcrossing, inbreeding, and selfing forms of unisexual reproduction as well as canonical sexual reproduction between opposite mating types. Long thought to be clonal, >99% of sampled environmental and clinical isolates of C. neoformans are MATα, limiting the frequency of opposite mating-type sexual reproduction. Sexual reproduction allows eukaryotic organisms to exchange genetic information and shuffle their genomes to avoid the irreversible accumulation of deleterious changes that occur in asexual populations, known as Muller’s ratchet. We tested whether unisexual reproduction, which dispenses with the requirement for an opposite mating-type partner, is able to purge the genome of deleterious mutations. We report that the unisexual cycle can restore mutant strains of C. neoformans to wild-type genotype and phenotype, including prototrophy and growth rate. Furthermore, the unisexual cycle allows attenuated strains to purge deleterious mutations and produce progeny that are returned to wild-type virulence. Our results show that unisexual populations of C. neoformans are able to avoid Muller’s ratchet and loss of fitness through a unisexual reproduction cycle involving α-α cell fusion, nuclear fusion, and meiosis. Similar types of unisexual reproduction may operate in other pathogenic and saprobic eukaryotic taxa.  相似文献   

18.
Intergenomic interactions that include homoeologous recombinations and intergenomic translocations are commonly observed in plant allopolyploids. Homoeologous recombinations have recently been documented in unisexual salamanders in the genus Ambystoma and revealed exchanged chromosomal segments between A. laterale and A.jeffersonianum genomes in individual unisexuals. We discovered intergenomic translocations in two widespread unisexual triploids A.laterale--2 jeffersonianum (or LJJ) and its tetraploid derivative A.laterale--3 jeffersonianum (or LJJJ) by genomic in situ hybridization (GISH). Two different types of intergenomic translocations were observed in two unisexual populations and one contained novel chromosomes generated by an intergenomic reciprocal translocation. We also observed chromosome deletions in several individuals and these chromosome fragmentations were all derived from the A. jeffersonianum genome. These observed intergenomic reciprocal translocations are believed to be caused by non-homologous pairing during meiosis followed by breakage-rejoining events. Genomes of unisexual Ambystoma undergo complicated structural changes that include various intergenomic exchanges that offer unisexuals genetic and phenotypic complexity to escape their evolutionary demise. Unisexual Ambystoma have persisted as natural nuclear genomic hybrids for about four million years. These unisexuals provide a vertebrate model system to examine the interaction of distinct genomes and to evaluate the corresponding genetic, developmental and evolutionary implications of intergenomic exchanges. Intergenomic translocations and homoeologous recombinations appear to be frequent chromosome reconstruction events among unisexual Ambystoma.  相似文献   

19.
Chromosomes and allozymes were studied from chromosomally distinct unisexual (races B and C) and bisexual (races D and E) populations of the teiid lizard Cnemidophorus lemniscatus, and from selected outgroup taxa (C. murinus, C. nigricolor, Ameiva ameiva, and A. auberi). Karyotyping confirmed the racial identity of individuals and showed that the chromosomal composition of populations at specific localities has remained the same for 20 years. All individuals of both unisexual populations were heterozygous for a pericentric inversion that distinguishes D and E bisexuals. Also, the unisexuals were all heterozygous for 8 of 11 protein loci for which D and E were fixed or nearly fixed for different alleles. Most of these alleles represent derived states relative to the other Cnemidophorus and Ameiva analyzed, and the fixed heterozygote condition at these nine markers provides unequivocal support for the hypothesis that the unisexual C. lemniscatus arose by hybridization between ancestors genetically similar to extant D and E populations. At the remaining three loci for which D and E show fixed differences, the unisexuals were homozygous rather than heterozygous. This suggests that either (1) allozymes have been lost by mutations to null, silent, or convergent mobility states, (2) ancestral genotypes were similar to but not identical with the extant D and E races, and/or (3) limited recombination may occur between unisexual genomes. Allozyme-based genetic distances between D and E were large, suggesting that bisexual races D and E are genetically isolated; each race should be accorded full species status. This conclusion is supported by the absence of any clear biochemical evidence for their monophyly with respect to the other Cnemidophorus examined. Cladistic analyses of 17 phylogenetically informative loci revealed two equally parsimonious shortest trees, one supporting monophyly and the other paraphyly of the C. lemniscatus complex. Further testing of the monophyly of C. lemniscatus requires additional data. With the present study, the evidence that all parthenogenetic Cnemidophorus are of hybrid origin is complete.  相似文献   

20.
Because most clonal vertebrates have hybrid genomic constitutions, tight linkages are assumed among hybridization, clonality, and polyploidy. However, predictions about how these processes mechanistically relate during the switch from sexual to clonal reproduction have not been validated. Therefore, we performed a crossing experiment to test the hypothesis that interspecific hybridization per se initiated clonal diploid and triploid spined loaches (Cobitis) and their gynogenetic reproduction. We reared two F1 families resulting from the crossing of 14 pairs of two sexual species, and found their diploid hybrid constitution and a 1:1 sex ratio. While males were infertile, females produced unreduced nonrecombinant eggs (100%). Synthetic triploid females and males (96.3%) resulted in each of nine backcrossed families from eggs of synthesized diploid F1s fertilized by haploid sperm from sexual males. Five individuals (3.7%) from one backcross family were genetically identical to the somatic cells of the mother and originated via gynogenesis; the sperm of the sexual male only triggered clonal development of the egg. Our reconstruction of the evolutionary route from sexuality to clonality and polyploidy in these fish shows that clonality and gynogenesis may have been directly triggered by interspecific hybridization and that polyploidy is a consequence, not a cause, of clonality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号