首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of two types of nontubular mastigonemes associated with the anterior flagellar surface of the phagotrophic biflagellate Peranema trichophorum (Ehrenberg) Stein is described from studies of thin sections, negative-stained and shadow-cast preparations of both intact and isolated, detergent-treated flagella. Long mastigonemes form a unilateral, spiral array of tufts which curve toward the distal end of the flagellum, while two short mastigoneme ribbons form unequal halves of a bilateral array parallel to the flagellar long axis. Each ribbon is composed of individual overlapping fan-shaped tiers of short mastigonemes interlinked by fine fibrils. A model proposed for Peranema mastigonemes is similar to recent models of mastigoneme organization in Euglena.  相似文献   

2.
Most flagellates with hispid flagella, that is, flagella with rigid filamentous hairs (mastigonemes), swim in the direction of the flagellar wave propagation with an anterior position of the flagellum. Previous analysis was based on planar wave propagation showing that the mastigonemes pull fluid along the flagellar axis. In the present study, we investigate the flagellar motions and swimming patterns for two flagellates with hispid flagella: Paraphysomonas vestita and Pteridomonas danica. Studies were carried out using normal and high-speed video recording, and particles were added to visualize flow around cells generating feeding currents. When swimming or generating flow, P. vestita was able to pull fluid normal to, and not just along, the flagellum, implying the use of the mastigonemes in an as yet un-described way. When the flagellum made contact with food particles, it changed the flagellar waveform so that the particle was fanned towards the ingestion area, suggesting mechano-sensitivity of the mastigonemes. Pteridomonas danica was capable of more complex swimming than previously described for flagellated protists. This was associated with control of the flagellar beat as well as an ability to bend the plane of the flagellar waveform.  相似文献   

3.
The structure, assembly, and composition of the extracellular hairs (mastigonemes) of Ochromonas are detailed in this report. These mastigonemes form two lateral unbalanced rows, each row on opposite sides of the long anterior flagellum. Each mastigoneme consists of lateral filaments of two distinct sizes attached to a tubular shaft. The shaft is further differentiated into a basal region at one end and a group of from one to three terminal filaments at the free end. Mastigoneme ontogeny as revealed especially in deflagellated and regenerating cells appears to begin by assembly of the basal region and shaft within the perinuclear continuum. However, addition of lateral filaments to the shaft and extrusion of the mastigonemes to the cell surface is mediated by the Golgi complex. The ultimate distribution of mastigonemes on the flagellar surface seems to be the result of extrusion of mastigonemes near the base of the flagellum, and it is suggested that mastigonemes are then pulled up the flagellum as the axoneme elongates. Efforts to characterize mastigonemes biochemically after isolation and purification on cesium chloride (CsCl) followed by electrophoresis on acrylamide gels have demonstrated what appear to be a single major polypeptide and several differentially migrating carbohydrates. The polypeptide is not homologous with microtuble protein. The functionally anomalous role of mastigonemes in reversing flagellar thrust is discussed in relation to their distribution relative to flagellar anatomy and to the plane of flagellar undulations.  相似文献   

4.
W. Herth 《Protoplasma》1982,112(1-2):17-25
Summary The chrysoflagellate algaPoterioochromonas bears two unequal flagella. There is a short naked one and a long flagellum with mastigonemes. Ultrastructural investigation reveals that the centralpair microtubules in both flagella have no fixed position with respect to the flagellar base and root system, or the mastigoneme rows in the long flagellum. The central-pair microtubules are twisted several times along the length of the flagellum. This might indicate active or passive rotation of the central-pair microtubules during flagellar beat.  相似文献   

5.
The flagella in Cryptomonas ovata Ehrenberg and two other un-named strains of Cryptomonas both bear stiff hairs with fine distal filaments of the same type as those found in the Xanthophyceae, the Chrysophyceae sensu stricto, the Phaeophyceae, the Bacillariophyceae, the Eustigmatophyceae and the Oomycetes. On the longer of the two flagella the hairs are 2·5 µm long and in two opposite rows whereas on the shorter flagellum they measure only 1 µm, are arranged in a single row and are more closely spaced. The long flagellum also bears a characteristic lateral swelling with a tuft of hairs of the same type as on the remainder of the flagellum, at approximately the level at which it emerges from the gullet. The hairs on the flagella of Hemiselmis rufescens Parke are distributed in a similar manner to those in Cryptomonas but they are more flexible and the swelling and tuft of hairs appear to be absent from the long flagellum. Hairs are apparently absent from the short flagellum of Chroomonas sp. The periplast in Cryptomonas ovata shows a hexagonal pattern in surface view and in sections of all three Cryptomonas strains appears as a typical plasmalemma underlain by a discontinuous layer of electron-dense material with variable substructure. The distribution of flagellar hairs and the structure of the periplast appear to be characters unique to the Cryptophyceae and these features emphasise the isolated position of this class of algae.  相似文献   

6.
The ultrastructure of the reservoir region of Phacus pleuronectes is described. Thin sections, ruthenium red staining, and shadow-cast preparations elucidate relationships and structural details of the flagella and flagellar hairs or mastigonemes. A heretofore undescribed structure in Phacus, the multitubular structure (MTS), with associated fibrillar projections, is reported. The MTS is located in the cytoplasm at the distal region of the reservoir near the contractile vacuole. A coordinated function of the MTS and adjacent fibrillar projections is suggested. The occurrence of mastigonemes along the entire length of the emergent flagellum is suggested, in contrast to earlier reports of their presence only on that portion of the flagellum distal to the cytostome. The present investigation postulates also that the mastigonemes are bipartite, the thicker fibrous bases becoming modified distally into the classically described, mastigonemes.  相似文献   

7.
Structure, function, and development of mastigonemes (flagellar hairs) of 2 chrysophycean flagellates were examined with light and electron microscopy in whole mount and sectioned preparations. Mastigonemes of both organisms are identical, consisting of a tapered base 0.25–0.3 μm long, maximum width of 0.03 μm; a hollow shaft 0.85 μm × 23 nm; and 2 types of laterally projecting filaments. Two rows of mastigonemes are attached to the long flagellum, one on each side in the same plane as the central pair of microtubules. One row is composed of single mastigonemes while the other bears them in “tufts.” The primary mastigonemal attachment is on the flagellar membrane. Developmental sequences as supported by electron micrographs and kinetic studies demonstrate the intracellular location of promastigonemes during reflagellation, colchicine-inhibited reflagellation, and release from inhibition. The promastigonemes first appear in the peri-nuclear space in association with the outer nuclear membrane and several dozen may accumulate there. These may pinch off as bundles and move into the cytoplasm, or if mastigonemes are being utilized rapidly by the cell, the promastigonemes are channeled a few at a time from the perinuclear space into the Golgi apparatus where some structural modifications are made. The mastigonemes are then transported in Golgi-derived secretory-type vesicles to the cell surface near the base of the growing flagellum where the vesicle membrane fuses with the plasma membrane and the mastigonemes become extracellular, although the membrane association is retained. The origin of the asymmetric arrangement of mastigonemes on the flagellum is discussed.  相似文献   

8.
Two new oceanic free-living heterotrophic Heterokonta species with picoplanktonic size (< 2 microm) are described. Symbiomonas scintillans Guillou et Chrétiennot-Dinet gen. et sp. nov. was isolated from samples collected both in the equatorial Pacific Ocean and the Mediterranean Sea. This new species possesses ultrastructural features of the bicosoecids, such as the absence of a helix in the flagellar transitional region (found in Cafeteria roenbergensis and in a few bicosoecids), and a flagellar root system very similar to that of C. roenbergensis, Acronema sippewissettensis, and Bicosoeca maris. This new species is characterized by a single flagellum with mastigonemes, the presence of endosymbiotic bacteria located close to the nucleus, the absence of a lorica and a R3 root composed of a 6+3+x microtubular structure. Phylogenetical analyses of nuclear-encoded SSU rDNA gene sequences indicate that this species is close to the bicosoecids C. roenbergensis and Siluania monomastiga. Picophagus flagellatus Guillou et Chrétiennot-Dinet gen. et sp. nov. was collected in the equatorial Pacific Ocean. Cells are naked and possess two flagella. This species is characterized by the lack of a transitional helix and lateral filaments on the flagellar tubular hairs, the absence of siliceous scales, two unequal flagella, R1 + R3 roots, and the absence of a rhizoplast. SSU rDNA analyses place this strain at the base of the Chrysophyceae/Synurophyceae lineages.  相似文献   

9.
Surface organization and composition of Euglena. II. Flagellar mastigonemes   总被引:6,自引:5,他引:1  
The surface of the Euglena flagellum is coated with about 30,000 fine filaments of two distinct types. The longer of these nontubular mastigonemes (about 3 micron) appear to be attached to the paraflagellar rod whereas the shorter nontubular mastigonemes (about 1.5 micron) are the centrifugally arranged portions of a larger complex, which consists of an attached unit parallel to and outside of the flagellar membrane. Units are arranged laternally in near registration and longitudinally overlap by one-half of a unit length. Rows of mastigoneme units are firmly attached to the axoneme microtubules or to the paraflagellar rod as evidenced by their persistence after removal of the flagellar membrane with neutral detergents. SDS-acrylamide gels of whole flagella revealed about 30 polypeptides, of which two gave strong positive staining with the periodic acid-Schiff (PAS) procedure. At least one of these two bands (glycoproteins) has been equated with the surface mastigonemes by parallel analysis of isolated and purified mastigonemes, particularly after phenol extraction. The faster moving glycoprotein has been selectively removed from whole flagella and from the mastigoneme fraction with low concentrations of neutral detergents at neutral or high pH. The larger glycoprotein was found to be polydisperse when electrophoresed through 1% agarose/SDS gels. Thin-layer chromatography of hydrolysates of whole flagella or of isolated mastigonemes has indicated that the major carbohydrate moiety is the pentose sugar, xylose, with possibly a small amount of glucose and an unknown minor component.  相似文献   

10.
The biflagellate somatic cells of Volvox carteri f. nagariensis lyengar exhibit an asymmetric pattern of flagellar development. Initiallt each somatic cell has two short (4 μm) flagella but after several hours one flagellum on each cell elongates unitl it reaches a length of 12 μm. Due to the regular arrangement of somatic cells in the Volvox spheroid it is apparent that the same flagellum on each somatic is the first to elongale. The asymmetric flagellar length is maintained for about 8 h after which the second flagellum on each somatic cell elongates. When the second flagellum attains the same length (12 μm) as the first flagellum, both flagella elongale at the same rate until reaching a final length of 22 μm. Experimental removal of somatic cell flagella results in their regeneration. Somatis cells regenerate both flagella simultaneously and full length flagella are produced in about 2 h. The intial rate of flagellar regeneration is about ten times faster than the intial rate of flagllar growth in development. Cycloheximide, an inhibitor of protein synthesis, has no effect on the initial rate of flagellar regeneration but the flagella produced in the presence of the drug are half the length of flagella produced in its absence. Somatic cells are able to regenerate flagella up to the time of α and β tubulin, the major structural proteins of the flagellar axoneme, and other cellular proteins.  相似文献   

11.
M. Cope  A. R. Hardham 《Protoplasma》1994,180(3-4):158-168
Summary Cryomicrotomy and immunofluorescence microscopy employing three different categories of monoclonal antibody (MAb) that label antigens on the surface of one or both flagella ofPhytophthora dnnamomi have been used to follow the synthesis and assembly of flagellar surface components. MAb Zf 1 binds to the surface of both the anterior tinsel and posterior whiplash flagella, as well as to a nuclear component. The labeling of the flagella is punctate in nature, is brighter at the flagellar base, and does not always extend to the distal tip of the flagella. MAbs in the Zt group recognise an antigen that is located along the sides of the tinsel flagellum and may be associated with the base of the mastigonemes. Immunodot-blot analysis has shown that binding of Zt MAbs is abolished by pretreatment with either pronase or periodate oxidation indicating that the antigen is a glycoprotein. MAbs in the Zg group bind to the mastigonemes on the tinsel flagellum and to packets of mastigonemes in the cytoplasm of zoospores. Zt and Zg antigens increase in abundance during zoosporogenesis and are present throughout the life cycle of the fungus, whereas the non-nuclear localisation of the Zf antigen appears only during sporulation. Prior to association with the flagellar surface, all three components become clustered in the groove region of zoospores. They do not become associated with the flagellar surface until at least 15 min after the flagellar axoneme has formed.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMF dimethylformamide - lgG1 immunoglobulin G1 - MAbs monoclonal antibodies - NIM non-immune mouse antibodies - PBS phosphate-buffered saline - PBST phosphate-buffered saline with 0.5% Tween 20 - PIPES 1,4-piperazinediethanesulfonic acid - PPD paraphenylenediamine dihydrochloride - RT room temperature - TBS tris-buffered saline - TEST tris-buffered saline with 0.05% Tween 20  相似文献   

12.
The Pinguiophyceae class. nov., a new class of photo‐synthetic stramenopiles (chromophytes), is described. The class includes five monotypic genera, Glossomastix, Phaeomonas, Pinguiochrysis (type genus), Pinguio‐coccus and Polypodochrysis. These algae have an unusually high percentage of polyunsaturated fatty acids, especially 20:5 (n‐3)(EPA, eicosapentaenoic acid). These fatty acids are the basis for choosing the Latin noun ‘Pingue’ (= fat, grease) as the root for the class name. Analyses of nuclear‐encoded 18S rRNA and chloroplast‐encoded rbcL gene sequence data showed that these algae formed a monophyletic group that could not be placed in any other class. Morphologically, the species are all single‐celled microalgae from picoplanktonic size to over 40 urn in length. Each cell has one (or two) typical chloroplast(s) with a girdle lamella and a surrounding chloroplast endoplasmic reticulum. Pyrenoids occur within the chloroplast, varying from embedded to stalked, and membranes penetrate into the pyrenoid in all five genera. Phaeomonas has motile cells with two flagella, and the forward‐directed flagellum bears mastigonemes (tripartite flagellar hairs). Two other genera (Glossomastix, Polypodochrysis) produce zoospores that possess only one smooth flagellum (no mastigonemes), and this flagellum apparently is the mature flagellum, a feature previously unknown in the photosynthetic stramenopiles. The major carotenoid pigments in the pinguiophytes are fucoxanthin, violaxanthin, zeaxanthin and P‐carotene, as well as chlorophyll a and chlorophyll c‐related pigment(s). These features support recognition of the Pinguiophyceae class. nov. as a unique group of algae.  相似文献   

13.
Purified flagella from Euglena yield a unique high molecular weight glycoprotein when treated with low concentrations of nonionic detergents. This glycoprotein termed "xyloglycorien" cannot be extracted from other regions of the cell, although a minor component that coextracts with xyloglycorien does have a counterpart in deflagellated cell bodies. Xyloglycorien is tentatively identified with a flagellar surface fuzzy layer that appears in negatively stained membrane vesicles of untreated flagella but not in similar vesicles after Nonidet P-40 extraction. The localization of xyloglycorien is further confirmed to be membrane associated by reciprocal extraction experiments using 12.5 mM lithium diiodosalicylate (LIS), which does not appreciably extract xyloglycorien, visibly solubilize membranes, or remove the fuzzy layer. Rabbit antibodies directed against the two major flagellar glycoproteins (xyloglycorien and mastigonemes) to some extent cross react, which may in part be caused by the large percentage of xylose found by thin-layer chromatography (TLC) analysis to be characteristic of both antigens. However, adsorption of anti- xyloglycorien sera with intact mastigonemes produced antibodies responding only to xyloglycorien, and vice versa, indicating the nonidentity of the two antigens. Antibodies or fragments of these antibodies used in immunofluorescence assays demonstrated that xyloglycorien is confined to the flagellum and possibly the adjacent reservoir and gullet. Binding could not be detected on the cell surface. The sum of these experiments suggests that, in addition to mastigonemes, at least one major membrane glycoprotein in Euglena is restricted to the flagellar domain and is not inserted into the contiguous cell surface region.  相似文献   

14.
Summary The flagellation and growth characteristics of 82 strains ofRhizobium were studied. The strains were originally isolated from the root nodules of 19 genera and 35 species of leguminous plants. Two morphological types of bacteria were found which differed mainly in the nature of their flagellation. The one type shows a most unusual and unique flagellation with single subpolar flagella of wavelength averaging from 1.9 to 2.2 microns. The other type shows peritrichous flagellation with usually one and, less often, several flagella per flagellated individual. The flagellar wavelength of the latter type averaged from 1.3 to 1.6 microns. Most strains of both types were rather poorly flagellated. An almost perfect correlation was found between the type of flagellation and the growth rate in peptone-mannitol medium. The subpolar types grew relatively slowly and the peritrichous types relatively rapidly. Some strains of the subpolar type showed flagellar variants with multiple flagella of very short wavelength in addition to the normal subpolar flagellum. A few individuals showed the short wavelength flagella only.  相似文献   

15.
The flagellar hair ultrastructure of 16 strains of species of the prasinophycean genera Mantoniella, Mamiella, Pseudoscourfieldia, Nephroselmis, Tetraselmis, Scherffelia, Pterosperma, and Pyraminonas was examined in detail by whole-mount electron microscopy. The flagellar hairs of all genera displayed a high degree of ultrastructural complexity that was completely conserved within each strain. In all strains, flagellar hairs occurred on the sides of the flagella (lateral hairs); in several strains, special flagellar hairs also were found on the flagellar tips (tip hairs; absent in the Chlorodendrales and in Nephroselmis). Two groups of lateral hairs were distinguished: 1) T-hairs (“Tetraselmis-type” flagellar hairs), characterized by a smooth, tubular shaft of ca. 15 nm diameter and an overall length of 0.5–1.3 μm, and 2) Pt-hairs (“Pterosperma-type lateral flagellar hairs”), which were considerably longer (ca. 1.5–5.4 μm), characterized by a thick shaft of ca. 30 nm diameter, which was covered with a layer of regularly spaced small particles of ca. 10 nm diameter. In both groups of flagellar hairs, a strain-specific number of subunits (1–101) in linear arrangement was attached to the distal end of the shaft. Tip hairs were either structurally related to T-hairs (Mamiellales, Pseudoscourfieldia) or represented a separate group, Pt-hairs (“Pterosperma-type flagellar tip hairs”; Pterosperma, Pyramimonas). In four genera (Mantoniella, Mamiella, Pseudoscourfieldia, Nephroselmis), both groups of lateral hairs occurred together on the same cell. Interestingly in these taxa the Pt-hairs were exclusively attached to the shorter immature flagella (no. 2), but, in contrast, in Mantoniella and Pseudoscourfieldia the tip hairs were restricted to the longer mature flagellum (no. 1). Thus, flagella of different developmental status differ in their hair-scale complement. The occurrence, distribution, and ultrastructure of flagellar hairs can be used to identify and classify prasinophytes at all taxonomic levels.  相似文献   

16.
Summary The flagella of the pigmented algaEpipyxis pulchra (Chrysophyceae) were observed with image enhanced video microscopy to play an active role in gathering, physically seizing and selecting prey prior to phagocytosis. Vegetative unicells of this sessile, freshwater species possess two structurally and functionally distinct flagella, both active in feeding. During prey gathering the long flagellum, which is adorned with stiff hairs, beats rapidly to direct a strong water current towards the cell while the short, smooth flagellum moves very little. When a potential food particle is drawn by the current to contact the flagellar surfaces, the long flagellum stops beating and positions itself, in concert with the short flagellum, to seize the prey between them. Both flagella then briefly rotate the prey before selecting or rejecting it. If rejected, the particle is discarded by the coordinated activity of both flagella. If selected as food, the prey is held in place until a complex collecting cup emanates out from a position near the basal bodies and engulfs it. The cup plus enclosed food particle, now a food vacuole, is then retracted back to the cell proper.  相似文献   

17.
The tripartite tubular mastigoneme on the anterior flagellum is a morphological feature that characterizes the stramenopiles. Mastigonemes are significant and potentially informative structures not only from the viewpoint of systematics, but also of cell biology. Nevertheless, few biochemical studies have been reported on stramenopile mastigonemes. The flagella of Scytosiphon lomentaria (Phaeophyceae) were successfully isolated and analyzed using SDS-PAGE followed by protein sequencing. The partial amino acid sequence of one flagellar protein (115kDa) showed high similarity with the sexually induced gene 1 (sig1) product of centric diatoms. A polyclonal antibody against the 115-kDa protein reacted not only to the shaft of mastigonemes in Scytosiphon lomentaria, but also another distinctly different stramenopile flagellate, Sulcochrysis biplastida (Dictyochophyceae). Therefore, we propose that the 115-kDa protein (i.e. Sig1 homologs) is a constituent of the tubular shaft of the mastigoneme.  相似文献   

18.
Flagellar development in the plurilocular zoidangia of sporophytes of the brown alga Ectocarpus siliculosus was analyzed in detail using transmission electron microscopy and electron tomography. A series of cell divisions in the plurilocular zoidangia produced the spore-mother cells. In these cells, the centrioles differentiated into flagellar basal bodies with basal plates at their distal ends and attached to the plasma membrane. The plasma membrane formed a depression (flagellar pocket) into where the flagella elongated and in which variously sized vesicles and cytoplasmic fragments accumulated. The anterior and posterior flagella started elongating simultaneously, and the vesicles and cytoplasmic fragments in the flagellar pocket fused to the flagellar membranes. The two flagella (anterior and posterior) could be clearly distinguished from each other at the initial stage of their development by differences in length, diameter and the appendage flagellar rootlets. Flagella continued to elongate in the flagellar pocket and maintained their mutually parallel arrangement as the flagellar pocket gradually changed position. In mature zoids, the basal part of the posterior flagellum (paraflagellar body) characteristically became swollen and faced the eyespot region. Electron dense materials accumulated between the axoneme and the flagellar membrane, and crystallized materials could also be observed in the swollen region. Before liberation of the zoospores from the plurilocular zoidangia, mastigoneme attachment was restricted to the distal region of the anterior flagellum. Structures just below the flagellar membrane that connected to the mastigonemes were clearly visible by electron tomography.  相似文献   

19.
The cell structure of the freshwater chrysomonad Spumella sp. has been studied. The cell contains a vesicular nucleus, mitochondria with tubular cristae, Golgi apparatus, flagellar roots, and wide dorsal microtubular band. The flagella bear the spiral of four to five coils in the transitional zone. The rudiments of mastigonemes have been found in the perinuclear space. The compact leucoplast has an amorphous core surrounded by the membrane. No stigma has been detected. The leucosin vacuole, rhizoplast, and swelling of the short flagellum are absent. One to three osmiophilic granules lie near the leucoplast. The contractile vacuole is surrounded by tubules. The resemblance and difference of investigated flagellate with other chrysomonads are discussed.  相似文献   

20.
The ultrathin structure of amoeboid flagellate Thaumatomastix sp. is considered. The cell is surrounded by two-layered triangular scales. They are formed on the surface of mitochondria. Pseudopodia grabbing bacteria run from ventricular furrow, which is armored with two longitudinal bands of microtubules. Heterodynamic flagella run from small flagellar pocket. Long back flagellum has thin mastigonemes. Proximal area of short flagellum is covered with flat oval scales. Transitional flagellant zone has no spiral or other additional elements. Transverse plate is localized above cell surface. Kinetosomes are parallel to each other. Vesicular nucleus and Golgi apparatus have typical structure. Oval mitochondria contain tubular cristae. Within cytoplasm, extrusive organelles (kinetocysts) containing amorphous material and capsule were found. The latter consists of muff and cylinder. Plasmodial and cystic phases of development have not been discovered. Contractile vacuole is absent. The resemblance between Thaumatomastix sp. and other thaumatomonads has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号