首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid variation among culture collection strains and 40 new isolates of Isochrysis galbana Parke was analyzed by quantitative genetic methods. Fatty acid variation among strains and among isolates was highly significant for major fatty acids showing the existence of a genetic component in the determination of differences in fatty acid content. The heritabilities for the major fatty acids ranged between 0.68 and 0.99 among collection strains and between 0.31 and 0.43 among isolates. Eicosapentaenoic acid (EPA) had the highest heritability in I. galbana, but the majority of remaining fatty acids also showed high heritability values. A similar experiment with five UTEX strains of Phaeodactylum tricornutum also showed the presence of a genetic component in four out of seven major fatty acids. Nevertheless, the UTEX strains did not differ significantly in EPA content, although they showed a heritability of 0.40 for this fatty acid. An additional experiment culturing the same isolates of I. galbana in larger volumes of media showed that there was a high significant positive linear relation between EPA content in different volumes. Therefore, EPA content in small volume cultures was an unbiased indicator of EPA content in larger volume cultures. Our results provide support for the genetic determination of fatty acid content in microalgae and suggest that selection, and mutation and selection, are likely to improve EPA content in I. galbana and probably in many other microalgae. Such a selection program can be carried out in small-volume cultures with high confidence.  相似文献   

2.
Cultures of the temperate estuarine diatom, Phaeodactylum tricornutum Bohlin (NEPCC Clone 31), were grown under ambient intensities of ultraviolet-A radiation (UVAR), photosynthetically active radiation (PAR), and various intensities of ultraviolet-B radiation (UVBR; 290–320 nm). Growth rates and cell volumes were monitored for 36 d. UVBR decreased growth rates and increased cell volumes. Sensitivity of growth to UVBR increased with time. Growth rates of P. tricornutum decreased with increasing ratios of UVBR:UVAR + PAR.  相似文献   

3.
Two morphotypes, fusiform and oval, were isolated from a single clone of the diatom Phaeodactylum tricornutum Bohlin and maintained as subclones by culturing in liquid and solid substrates, respectively. Salinity of the medium, from brackish to marine, had no effect on expression of the phenotypes. The oval cell is generated endogenously within a “transformed”fusiform cell upon transfer from liquid medium to agar plates. With the light microscope, normal and “transformed”fusiform cells, prior to giving rise to oval cells, can be discriminated by means of their staining response to toluidine blue. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of protein extracts from lysed cells revealed slight differences in polypeptide composition between fusiform and oval types. A phenotype-restoration experiment from oval to fusiform demonstrated that the oval type readily reestablished not only fusiform morphology but also the protein pattern characteristic for the fusiform type. Immunochemical analyses (western blots) using antisera raised against whole and lysed cells of both morphotypes revealed antigenic alterations of the oval morphotype. Several antigenic determinants restricted mainly to the surface of oval cells were detected. Results indicate that environmentally induced phenotypes of Phaeodactylum may be not only the consequence of specific gene expression but also the result of significant, general post-translational modifications.  相似文献   

4.
The consumption of inorganic macronutrients (NO3?+ NO2?, NH4+, and PO4?3) and the composition of intra- and extracellular dissolved free amino acid pools (IDFAA and EDFAA, respectively) were determined in continuous-reservoir batch dialysis cultures of the marine diatom Phaeodactylum tricornutum Bohlin maintained on unenriched natural seawater as a growth medium. Nutrient diffusion (Nd), which equals the nutrient uptake of the culture, increased with the cell density and the age of the culture. A concentration of 6.77 × 107 cells · mL?1 was obtained in stationary phase, which coincided with the NO3?+ NO2? diffusion limit (Ndmax) of the dialysis apparatus. The Ndmax for NH4+ occurred much earlier, at the end of exponential growth, whereas Ndmax for PO4?3 was not attained during the growth cycle of the culture, even in early stationary phase. A significant depletion (77%) of the IDFAA pool during exponential phase was followed by a reestablishment–to approximately 60% of the initial level–of internal pools during linear and stationary growth phases. This recovery occurred during the illuminated portion of the photoperiod (12:12 h LD) and involved principally the amino acids GLN, GLU, β-GLU, and ASN. The recovery of GLN and ASN levels was particularly significant, because the intracellular concentrations of these amino acids were higher at the end of the growth cycle than before. The EDFAA pool was generally dominated by the amino acids SER and GLY+THR; however, during active growth, ORN and LYS often constituted an important fraction. The EDFAA concentration increased until linear growth phase was reached, during which a higher concentration of total free amino acids was attained in darkness than under illumination. The EDFAA component diminished afterward, and in stationary phase this fraction returned to concentrations equivalent to those observed at the beginning of the growth cycle. The variations in EDFAA concentrations were expressed by a pronounced decrease in the cellular excretion of amino acids with increasing cell density. These cellular responses of Phaeodactylum tricornutum in dense culture, specifically the regulation of amino acid excretion and intracellular pool size, may affect the N-conversion coefficient (YN). Consequently, by prolonging the linear phase of growth and reducing the concentration of autoinhibitory metabolites by diffusion, a markedly enhanced final cell density can be achieved in cultures grown on natural unenriched seawater.  相似文献   

5.
A strain improvement program was initiated based on mutagenesis with the goal of commercial production of eicosapentaenoic acid (EPA)from EPA-overproducing microalgal strains. Two rounds of mutation and selection were conducted using Phaeodactylum tricornutum Bohlin UTEX #640 as the parent strain. After the first round of mutagenesis, a putative mutant (provisionally labeled 114) was obtained. The EPA content (% of dry weight) of this mutant strain was 37% higher than that of the wild type. 114 was further mutated and another putative mutant (provisionally called II242) was isolated, the EPA content of which was 44% higher than that of the wild type. When cultured with aeration in 1-L flasks, EPA content of the wild type and putative mutants 114 and II242 was, 17.3 mg · g?1, 31.5mg · g?1, and 38.6 mg · g?1 dry biomass, respectively. EPA productivity was 3.48 mg · L?1· d?1 4.01 mg · L?1· d?1, and 4.98 mg · L?1· d?1 respectively. These figures compare favorably with many other promising EPA-producing microorganisms and suggest that the use of a single methodology such as mutation and selection is a way to improve the polyunsaturated fatty acid content of microalgae and other microorganisms.  相似文献   

6.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

7.
Cultures of Isochrysis galbana Parks and Phaeodactylum tricornutum Bohlin were grown in iron-limited chemostats. With increasing iron deficiency, photosynthetic rate per cell and assimilation number decreased. The pattern of photosynthesis was also altered; in Fe deficient cells the proportion of 14C fixed in glycine and serine decreased with an accompanying increase into alanine after 3 min assimilation. Although there was no significant effect of Fe deficiency on the proportion of 14C incorporated into total amino acids and amides, the percentage of total 14C fixed in protein increased with increasing Fe deficiency. Cellular levels of chlorophyll a, carotenoids, cytochromes and protein also decreased with increasing Fe deficiency. However, the reduction in chlorophyll a/cell was not as great as that of cytochrorne f1 and Fe deficient cells therefore showed a marked increase in chlorophyll a:cytochrorne f1 ratio.  相似文献   

8.
The effects of nitrogen starvation in the presence or absence of sodium in the culture medium were monitored in batch cultures of the marine diatom Phaeodactylum tricornutum Bohlin. During nitrogen starvation in the presence of sodium, cell nitrogen and chlorophyll a decreased, mainly as a consequence of continued cell division. These decreases were accompanied by decreases in the rates of photosynthesis and respiration. There was no change in either cell volume or carbohydrate, but both carbon and lipid increased. During nitrogen starvation in the absence of sodium, cell division ceased. Cell nitrogen and chlorophyll a remained constant, and respiration did not decrease, but the changes in the photosynthetic rate and the lipid content per cell were similar to cultures that were nitrogen-starved in the presence of sodium. The carbon-to-nitrogen ratio increased in both cultures. Nitrogen, in the form of nitrate, and sodium were resupplied to cultures that had been preconditioned in nitrogen- and sodium-deficient medium for 5 d. Control cultures to which neither nitrate or sodium were added remained in a static state with respect to cell number, volume, and carbohydrate but showed slight increases in lipid. Cells in cultures to which 10 mM nitrate alone was added showed a similar response to cultures where no additions were made. Cells in cultures to which 50 mM sodium alone was added divided for 2 d, with concomitant small decreases in all measured constituents. Cell division resumed in cultures to which both sodium and nitrate were added. The lipid content fell dramatically in these cells and was correlated to metabolic oxidation via measured increases in the activity of the glyoxylate cycle enzyme, isocitrate lyase. We conclude that lipids are stored as a function of decreased growth rate and are metabolized to a small extent when cell division resumes. However, much higher rates of metabolism occur if cell division resumes in the presence of a nitrogen source.  相似文献   

9.
Cell division rate, carbon fixation per cell, cell width and chloroplast length of Phaeodactylum tricornutum Bohlin were determined at 30 different combinations of light intensity and temperature. Division rate peaked at 23° C or less depending on light intensity. For each light intensity studied, carbon fixation increased directly with growth temperature from 14 to 25° C. The slope of this relationship was modified by light intensity. Cells grown at 23–25° C tended to be larger than those grown at lower temperatures, possibly due to increased carbon fixation per cell coupled with lower division rates. Chloroplasts were largest at a combination of temperatures above 21° C and low light intensities. This effect could cause cells to sink at a higher than normal rate due to reduced vacuole size and is presented as a possible mechanism affecting the distribution of P. tricornutum.  相似文献   

10.
The effects of nitrate, phosphate, and iron starvation and resupply on photosynthetic pigments, selected photosynthetic proteins, and photosystem II (PSII) photochemistry were examined in the diatom Phaeodactylum tricornutum Bohlin (CCMP 1327). Although cell chlorophyll a (chl a) content decreased in nutrient-starved cells, the ratios of light-harvesting accessory pigments (chl c and fucoxanthin) to chl a were unaffected by nutrient starvation. The chl a-specific light absorpition coefficient (a*) and the functional absorption cross-section of PSII (σ) increased during nutrient starvation, consistent with reduction of intracellular self-shading (i.e. a reduction of the “package effect”) as cells became chlorotic. The light-harvesting complex proteins remained a constant proportion of total cell protein during nutrient starvation, indicating that chlorosis mirrored a general reduction in cell protein content. The ratio of the xanthophylls cycle pigments diatoxanthin and diadinoxanthin to chl a increased during nutrient starvation. These pigments are thought to play a photo-protective role by increasing dissipation of excitation energy in the pigment bed upstream from the reaction centers. Despite the increase in diatoxanthin and diadinoxanthin, the efficiency of PSII photochemistry, as measured by the ration of variable to maximum fluorescence (Fv/Fm) of dark-adapted cells, declined markedly under nitrate and iron starvation and moderately under phosphate starvation. Parallel to changes in Fv/Fm were decreases in abundance of the reaction center protein D1 consistent with damage of PSII reaction centers in nutrient-starved cells. The relative abundance of the carboxylating enzyme, ribulose bisphosphate carboxylase/oxygenase (RUBISCO), decreased in response to nitrate and iron starvation but not phosphate starvation. Most marked was the decline in the abundance of the small subunit of RUBISCO in nitrate-starved cells. The changes in pigment content and fluorescence characteristics were typically reversed within 24 h of resupply of the limiting nutrient.  相似文献   

11.
Oligomycin is an inhibitor of the mitochondrial ATP synthase. In nitrogen-replete cells of the marine diatom Phaeodactylum tricornutum Bohlin, the rate of dark respiration was high and markedly inhibited (62%–74%) in the presence of oligomycin. In contrast, the rate of dark respiration in nitrogen-deprived cells was about half that in nitrogen-replete cells but was only slightly inhibited (16%–30%) by oligomycin. Consistent with these effects on rates of dark respiration, oligomycin decreased the ATP level and the ATP:ADP ratio by about 40% in nitrogen-replete cells incubated in darkness but had a negligible effect on the ATP level and ATP:ADP ratio in nitrogen-deprived cells. In sodium and nitrogen-deprived cells, the rate of dark respiration was greater than that in nitrogen-replete cells, but there was little effect of oligomycin on the rate of dark respiration. In light-limited cells, the rate of dark respiration was similar to that in nitrogen-deprived cells, but the inhibition (57%) in the presence of oligomycin was greater. These results suggest that most of the O2 consumption by nitrogen-replete cells was linked to mitochondrial ATP synthesis and that the rate of mitochondrial ATP synthesis in nitrogen-deprived and sodium and nitrogen-deprived cells was low. The potential implications of these results for our understanding of maintenance respiration are discussed.  相似文献   

12.
Eleven different strains of Phaeodactylum tricornutum Bohlin were obtained from three culture collections and were examined for the presence of external and internal carbonic anhydrase (CA). Cells of all strains, grown in standing culture at alkaline pH and low, dissolved inorganic carbon had internal CA, but only eight were found to have external CA. External CA activity was reduced when cultures were bubbled with air and was completely repressed when they were grown on 5% CO2. Expression of external CA activity appears to be regulated by CO2 concentration in the growth medium, but within one species, there appears to be a variation in occurrence of external CA and consequently in the mode of inorganic carbon acquisition.  相似文献   

13.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   

14.
Cultures of the marine diatom Phaeodactylum tricornutum Bohlin incorporated, a large proportion of the total fixed carbon (50% or more) into amino acids and amides during short periods of photo-assimilation of 14C-labelled carbon dioxide. Although increasing nitrogen limitation in a nitrate-limited chemostat had little significant effect on the proportion of C incorporated into amino acids and amides combined, it did affect the distribution of radioactivity within individual compounds of this group. In particular, increasing degrees of N deficiency reduced the proportion incorporated into amides to almost undetectable levels, reduced the proportion in alanine and increased the proportion in glutamic acid. Also, increasing N limitation decreased the relative synthesis of sugar phosphates and increased the proportion of C assimilated into intermediates of the tricarboxylic acid cycle. Reduced light intensity did not have any significant effect on the proportion of C incorporated into the total amino acids and amides, but did cause a decrease in the radioactivity  相似文献   

15.
Ethmodiscus rex (Rattray) Wiseman and Hendey cells from near surface net tows in the Southwest Atlantic Ocean and Caribbean Sea were examined for chemical composition, internal nutrient pool concentrations, and oxygen evolution characteristics. Elemental ratios indicated nitrogen limitation with C:N:P ratios of 125:9:1 (atoms), and carbon: chlorophyll (chl) ratios of 129:1 (weight). However, internal nitrate pools (1.4–27.1 mM) suggested that cells were not N-limited. Intracellular NO3? accounted for up to 54% (range = 3–54%) of the total N quota in some samples. Photosynthetic parameters were consistent with a high-light-adapted population and suggested an instantaneous maximum chl-specific photosynthetic rate (PBmax) of 4.8–12.4 nmol O2·μg chl?1· h?1. Respiration rates varied ten-fold and were inversely related to PBmax Ethmodiscus chemical composition and buoyancy characteristics are similar to vertically migrating Rhizosolenia mats and the non-motile dinoflagellate Pyrocystis noctiluca Murray (Schuett). The presence of internal NO3? pools in Ethmodiscus suggests that this genus is also vertically migrating to exploit sub-surface nitrogen pools. Such behavior may be widespread in large, non-motile oceanic phytoplankton. Based on ascent rate data, chemical composition, and photosynthetic rates, we estimate that the entire division–migration cycle for Ethmodiscus requires at least 7–12 days.  相似文献   

16.
Information regarding genome size and structure is a prerequisite for selecting model organisms and for facilitating the most efficient study of their chromosomal DNA. The goal of this study was to identify future candidates for complete‐genome‐sequencing projects among economically or evolutionarily important species of haptophyte algae. Using pulsed‐field gel electrophoresis (PFGE), we identified relatively small genomes and chromosome sizes in two haptophyte species from the class Pavlovophyceae, Pavlova gyrans Butcher and Diacronema sp. The basal position of Pavlovophyceae in the Haptophyta; the key position of this group in the chromalveolates; and their economic and potential biomedical importance, ease of culturing, and small genome size make these taxa ideal models for complete‐genome sequencing.  相似文献   

17.
The composition of fatty acids and contents of eicosapentaenoic acid (EPA) and polyunsaturated fatty acids (PUFAs) of the economically important marine diatom, Phaeodactylum tricornutum (Bohlin), were investigated to see whether reducing the culture temperature enhances the production of EPA and PUFAs. The contents of EPA and PUFAs of P. tricornutum were found to be higher at lower temperature when cultured at 10, 15, 20, or 25°C. When the cells grown at 25°C were shifted to 20, 15, or 10°C, the contents per dry mass of PUFAs and EPA increased to the maximal values in 48, 24, and 12 h, respectively. The highest yields of PUFAs and EPA per unit dry mass (per unit volume of culture) were 4.9% and 2.6% (12.4 and 6.6 mg·L?1), respectively, when temperature was shifted from 25 to 10°C for 12 h, both being raised by 120% compared with the control. The representative fatty acids in the total fatty acids, when temperature was lowered from 25 to 10°C, decreased proportionally by about 30% in C16:0 and 20% in C16:1(n?7) but increased about 85% in EPA. It was concluded that lowering culture temperature of P. tricornutum could significantly raise the yields of EPA and PUFAs.  相似文献   

18.
Phaeodactylum tricornutum Bohlin, the one diatom known to lack a silicon requirement for growth, and the prasinophyte Platymonas sp. are two representatives of a taxonomically diverse group of planktonic algae that have been reported to take up Si without a demonstrable requirement for the element. For both species, removal of Si from solution during growth in batch culture has at least two components; true biological uptake throughout the growth of the culture, and spontaneous inorganic precipitation of a solid silicate phase–probably Mg2Si3O8 (sepiolite)–under the elevated pH conditions that prevail late in batch growth. It is not clear to what extent previous observations of Si uptake by algae without siliceous frustules may be influenced by inorganic, non-cellular precipitation. The kinetics of true cellular uptake of Si are similar in Phaeodalylum and Platymonas, and different from those reported for the Si-requiring diatoms. Uptake follows hyperbolic saturation kinetics in both species, with half-saturation concentrations of 97.4 μM in Phaeodactylum and 80.9 μM in Platymonas, as compared to ca. 1–6 μM in diatoms that form siliceous frustules. Uptake by Phaeodactylum and Platymonas is not substrate-saturated until the dissolved Si concentration of the medium exceeds 200 μM. Concentrations this high do not occur in the surface layer of the ocean, and the kinetics suggest that both species deposit much less silica in nature than they can be induced to deposit in culture.  相似文献   

19.
Silicon uptake kinetics of the diatom Phaeodactylum tricornutum (Bohlin) were examined at pH 8.8 ± 0.1 and pH 9.1 ± 0.1. Uptake follows hyperbolic saturation kinetics at both pH's, but at the higher pH the half-saturation constant for uptake is 11.8 μM, as opposed to 54.8 μM at the lower pH. When the uptake rate is examined as a function of the calculated concentration of the monovalent conjugate base, SiO(OH)3?, the half-saturation constant for uptake is 6.6 μM at either pH.  相似文献   

20.
A correlation between genome size and cell volume has been observed across diverse assemblages of eukaryotes. We examined this relationship in diatoms (Bacillariophyceae), a phylum in which cell volume is of critical ecological and biogeochemical importance. In addition to testing whether there is a predictive relationship across extant species, we tested whether evolutionary divergences in genome size were correlated with evolutionary divergences in cell size (using independent contrasts). We estimated total DNA content for 16 diatom species using a flow cytometer and estimated cell volumes using critical dimensions with scaling equations. Our independent contrast analyses indicated a significant correlated evolution between genome size and cell volume. We then explored the evolutionary and ecological implications of this evolutionary relationship. Diatom cell volume is an important component of the global carbon cycle; therefore, understanding the mechanisms that drive diatom genome evolution has both evolutionary and ecological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号