共查询到20条相似文献,搜索用时 0 毫秒
1.
Elisabeth Blickstad 《Applied microbiology and biotechnology》1984,19(1):13-17
Summary The effect of water activity (aw) on the growth and end-product formation of Lactobacillus viridescens SMRICC 174, Lactobacillus SMRICC 173 (homofermentative) and Brochothrix thermosphacta ATCC 11509T was studied. All strains orginated from meat or meat products. The aw was adjusted in the range 0.94–0.99 with NaCl or glycerol. A greater reduction in growth rates was found for L. viridescens and B. thermosphacta when aw was regulated with NaCl rather than with glycerol, the opposite was true for Lactobacillus 173. L. viridescens grew at aw >-0.94. At 0.94 awB. thermosphacta was totally inhibited when NaCl was the solute and Lactobacillus 173 when glycerol was the solute. Only minor variations in the end-product formation of the Lactobacillus spp. were found at different aw values. In aerobic culture B. thermosphacta produced less l-lactic acid and more acetic acid as the aw was decreased with NaCl, while the yields were unaffected when glycerol was used. 相似文献
2.
The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents. 相似文献
3.
Singh S. P. McAvoy J. Garrett A. Egan A. F. Rogers P. J. 《World journal of microbiology & biotechnology》1993,9(3):361-365
Brochothrix thermosphacta, a psychrophilic, facultative anaerobe, exhibited homolactic fermentation under anaerobic conditions in the presence of excess glucose. In glucose-limited chemostat culture (on synthetic medium), ethanol, acetate, formate and lactate were formed. Formation of ethanol and acetate was accounted for by the formate concentrations in culture filtrates. Acetate, formate and ethanol formation was enhanced at low growth rates in chemostat culture. O2-limited chemostat studies indicated that formate formation was inhibited by oxygen (<0.2 M) and studies with a variant, strain 301, which lacked pyruvate dehydrogenase activity, showed that cell culture in basal medium did not occur at O2 tensions greater than that preventing formate production in the wild-type strain. The data are consistent with stimulation of pyruvate formate lyase activity by glucose limitation, possibly because of decreased concentrations of glycolytic intermediates.S.P. Singh was and A. Garrett and P.J. Rogers are with the Division of Science and Technology, Griffith University, Brisbane 4111, Australia. J. McAvoy and A.F. Egan are with the CSIRO Meat Research Laboratory, Cannon Hills, Brisbane 4170, Australia. S.P. Singh is now with the Department of Microbiology, C.B.S. & H., G.B. Pant University of Agriculture & Technology, Pantnagar-263145, India. 相似文献
4.
The effects of different gaseous atmospheres were determined on the maximum specific growth rate (mumax) and end-product formation by Brochothrix thermosphacta ATCC 11509T, Lactobacillus viridescens SMRICC 174 and Lactobacillus sp. SMRICC 173 (homofermentative). The highest mumax-values for Lact. viridescens (0.47/h) and Broc. thermosphacta (0.49/h) were obtained in air. Under anaerobic conditions mumax was reduced, an atmosphere containing CO2 alone giving the greatest reduction. Lactobacillus sp. 173 did not grow in air or N2. Aerobic growth was obtained by adding peroxidase while anaerobic growth occurred in the presence of 5-20% CO2. Carbon dioxide alone reduced the growth rate. All test organisms produced mainly lactic acid anaerobically. Lactobacillus viridescens also produced ethanol while Broc. thermosphacta produced small amounts of ethanol and formic acid. With O2 present, the number of end-products increased for all organisms. Lactobacillus sp. 173 produced small amounts of acetic acid and acetoin together with lactic acid. Oxygen induced acetic acid production in Lact. viridescens and Broc. thermosphacta. Aerobically, Broc. thermosphacta also produced a large amount of acetoin and smaller amounts of 2,3-butanediol, iso-valeric acid and iso-butyric acid. The production of lactic acid by Broc. thermosphacta was completely prevented under strictly aerobic conditions. All test organisms consumed O2 during aerobic growth. Hydrogen peroxide was produced by Lact. viridescens and Lactobacillus sp. 173. 相似文献
5.
Vibrio anguillarum: influence of temperature, pH, NaCl concentration and incubation time on growth 总被引:2,自引:0,他引:2
J L Larsen 《The Journal of applied bacteriology》1984,57(2):237-246
An analysis of the effect of growth conditions on the growth (O.D. values) of five Vibrio anguillarum strains showed that the optima were as follows: pH 7, temperature 25 degrees C, NaCl concentration 2%, and O.D. estimates increased with the incubation time. The independent parameters, as well as their interactions significantly influenced the growth of Vibrio anguillarum (P less than 0.0001). Only the strain-salinity interaction was not always statistically significant. A restriction of the parameters to a level relevant for Danish marine recipients showed that pH and NaCl concentration (salinity) might be of minor importance while the temperature was always of high significance. The possible impact of these observations on local conditions is discussed. 相似文献
6.
The effects of different gaseous atmospheres were determined on the maximum specific growth rate (μmax ) and end-product formation by Brochothrix thermosphacta ATCC 11509T , Lactobacillus viridescens SMRICC 174 and Lactobacillus sp. SMRICC 173 (homofermentative). The highest μmax -values for Lact. viridescens (0.47/h) and Broc. thermosphacta (0.49/h) were obtained in air. Under anaerobic conditions μmax was reduced, an atmosphere containing CO2 alone giving the greatest reduction. Lactobacillus sp. 173 did not grow in air or N2 . Aerobic growth was obtained by adding peroxidase while anaerobic growth occurred in the presence of 5–20% CO2 . Carbon dioxide alone reduced the growth rate. All test organisms produced mainly lactic acid anaerobically. Lactobacillus viridescens also produced ethanol while Broc. thermosphacta produced small amounts of ethanol and formic acid. With O2 present, the number of end-products increased for all organisms. Lactobacillus sp. 173 produced small amounts of acetic acid and acetoin together with lactic acid. Oxygen induced acetic acid production in Lact. viridescens and Broc. thermosphacta . Aerobically, Broc. thermosphacta also produced a large amount of acetoin and smaller amounts of 2,3-butanediol, iso -valeric acid and iso -butyric acid. The production of lactic acid by Broc. thermosphacta was completely prevented under strictly aerobic conditions. All test organisms consumed O2 during aerobic growth. Hydrogen peroxide was produced by Lact. viridescens and Lactobacillus sp. 173. 相似文献
7.
Summary The aerobic growth and metabolism of eleven homofermentative and three heterofermentative Lactobacillus strains, three Leuconostoc strains, two Brochothrix thermosphacta strains and two Carnobacterium strains were studied in batch cultures at pH 6.0 and 25°C on a complex substrate containing 10.0 g glucose per litre. All strains, except Carnobacterium divergens 69, grew well aerobically. An oxygen consumption was registered for 18 of the strains—the exceptions being Lactobacillus alimentarius DSM 20249T, Lactobacillus farciminis DSM 20284T and Lactobacillus sharpeae DSM 20505T. The homofermentative lactobacilli showed a maximal oxygen consumption during the stationary growth phase and this was coupled with a low final viable count. Leuconostoc strains, heterofermentative lactobacilli, Brochothrix thermosphacta and Carnobacterium strains showed a maximal oxygen consumption during the exponential growth phase together with a high final viable count. The maximum specific growth rate varied from 0.19 to 0.54 h-1 while the growth yield varied from 19 to 86 g dry weight per mol glucose consumed. In general, homofermentative lactobacilli produced dl-lactic acid, acetic acid and acetoin. The three heterofermentative lactobacilli produced dl-lactic acid and acetic acid, two strains also produced ethanol Leuconostoc spp. formed d-lactic acid, acetic acid, and ethanol. B. thermosphacta produced acetoin, acetic acid, formic acid, isobutyric acid and isovaleric acid but no lactic acid. Carnobacterium produced l-lactic acid, acetic acid and acetoin. All strains accumulated hydrogen peroxide except L. alimentarius DSM 20249T, Carnobacterium piscicola 3 and B. thermosphacta.née Blickstad 相似文献
8.
John Owen Thomas Deeley Laurence Arthur Crum William Terence Coakley 《生物化学与生物物理学报:生物膜》1979,554(1):90-101
Human erythrocytes have been heated and stressed in a novel and controlled manner using rectangular microcapillaries. Heated cells attached to the capillary wall were stressed by liquid flow. Under particular conditions of stress, temperature and incubation time the body of the cell could be pulled in the flow, retaining a connection with the glass by means of a narrow process or tether. The tethers appear as: regularly beaded, irregularly beaded or without beads depending upon the incubation conditions. We have outlined the incubation regimes necessary to achieve these different responses in the temperature range 48–55°C. The cells become less deformable as the incubation is continued beyond an optimum time. The behaviour of the tether is compared with that of a viscoelastic liquid. Circular dichroism studies of ghost membranes show that the denaturation of membrane proteins is partially reversible when incubation times are similar to those required to bring about a loss of deformability. 相似文献
9.
J.L. Larsen 《Journal of applied microbiology》1984,57(2):237-246
An analysis of the effect of growth conditions on the growth (O.D. values) of five Vibrio anguillarum strains showed that the optima were as follows: pH 7, temperature 25°C, NaCl concentration 2%, and O.D. estimates increased with the incubation time. The independent parameters, as well as their interactions significantly influenced the growth of Vibrio anguillarum ( P 0<0001). Only the strain-salinity interaction was not always statistically significant. A restriction of the parameters to a level relevant for Danish marine recipients showed that pH and NaCl concentration (salinity) might be of minor importance while the temperature was always of high significance. The possible impact of these observations on local conditions is discussed. 相似文献
10.
The influence of glucose concentration on angiotensin II-induced hypertrophy of proximal tubular cells in culture. 总被引:4,自引:0,他引:4
G Wolf E G Neilson S Goldfarb F N Ziyadeh 《Biochemical and biophysical research communications》1991,176(2):902-909
Incubation of cultured murine proximal tubular cells in serum-free media containing 450 mg/dl of glucose resulted in cellular hypertrophy as defined by an increase in cell size, total protein content, and synthesis after 72 h. 10 nM angiotensin II further increased this hypertrophy, but failed to have any effect on cells grown in 100 mg/dl glucose. This enhancement by angiotensin II was blocked by treatment with 1 microM of the angiotensin-receptor antagonist DuP 753. Although cells incubated in either glucose media exhibited similar high-affinity angiotensin II-receptors, the receptor density was elevated only in cells grown in the presence of high glucose. Stimulation of cells in high glucose for 60 min with 10 nM angiotensin II also reduced significantly intracellular cAMP concentrations. This was not the case for proximal tubular cells cultured in normal glucose. Our results indicate that high glucose and angiotensin II have additive effects on the induction of hypertrophy in renal tubular cells. 相似文献
11.
E Blickstad 《Applied and environmental microbiology》1983,46(6):1345-1350
Lactobacillus viridescens, Lactobacillus sp. strain 173 (homofermentative), and Brochothrix thermosphacta ATCC 11509T were studied at different pH values and temperatures in aerobic and anaerobic batch cultures. The growth rates were higher in aerobic than in anaerobic cultures. L. viridescens grew faster at pH 5.8 than at pH 6.3, whereas the opposite was true for B. thermosphacta. Lactobacillus sp. strain 173 was inhibited in air or at 8 degrees C in anaerobic culture. B. thermosphacta did not grow in anaerobic culture at pH 5.3. The following variations in growth yields were found in the different environments studied: Lactobacillus sp. strain 173, 23 to 25 g (dry weight) per mol of glucose consumed; L. viridescens, 11 to 23 g/mol; B. thermosphacta, 16 to 38 g/mol. In air, L. viridescens produced D-lactic acid, ethanol, and acetic acid, whereas no acetic acid was produced anaerobically. Acetic acid and ethanol together constituted 41 to 48% of the total product yield irrespective of pH and temperature. Lactobacillus sp. strain 173 produced a racemic mixture of D- and L-lactic acid at pH 6.3, whereas the proportion of L-lactic acid was higher than that of D-lactic acid at pH 5.3. In air, product formation of B. thermosphacta varied from a domination of L-lactic acid to increasing yields of acetoin, acetic acid, 2,3-butanediol and isovaleric acid. The effect of pH and temperature on product formation was difficult to separate from the effect of O2 availability in aerobic cultures. However, it was indicated that more 2,3-butanediol and less acetoin were produced with a decreasing temperature.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
Effects of end-product inhibition of Cellulomonas uda anaerobic growth on cellobiose chemostat culture
下载免费PDF全文

Cellulomonas uda was grown anaerobically in a chemostat with 3.33 and 11.41 mM cellobiose in the feed medium at dilution rates varying from 0.017 to 0.29/h. Unusual results obtained were analyzed by using curves simulating the steady-state biomass. This unusual behavior could be accounted for by a classical growth model taking end-product inhibition into account. Acetate has been identified to be the major inhibitor in the experimental conditions used. Parameters calculated from experimental observations gave theoretical curves of biomass production versus dilution rate which fitted the experimental points very well. 相似文献
13.
An investigation was made on the factors influencing the acetic acid concentration in the culture liquid of the aerobic fermentations where acetie acid was used as a carbon source. The acetic acid concentration in the culture liquid changed in proportion to the amount of unutilizable acid or base supplied. This was explained by the principle of conservation of electroneutrality. Another factor affecting the acetic acid concentration in the culture liquid was bicarbonate ions which were formed by the dissolution and dissociation of carbon dioxide in the gas phase of the fermentor. The increment in bicarbonate ion concentration was equal to the decrement in the acetie acid concentration in the culture liquid. 相似文献
14.
H. Kaspar von Meyenburg 《Archives of microbiology》1969,66(4):289-303
Summary A method for the estimation of the yield on energy (Y
ATP) and of the efficiency of oxidative phosphorylation, in vivo (P/O ratio) is described, which is based on the measurement of effective gas exchange values (
and
) and of the yield coefficient Y of continuously growing populations of baker's yeast which vary in the degree of fermentation and respiration. For Y
ATP a value of 12.0±0.5
and for P/O ratio one of 1.1±0.05
was found and seems to be independent of the type of glucose catabolism (under glucose limitation).The gas exchange of populations of Saccharomyces cerevisiae synchronized at different growth rates was determined. The specific oxygen uptake and carbon dioxide formation rate, Q
O
2, and Q
CO
2, are shown to depend on the state of the cells in the budding cycle. Increase in gas metabolism and therefore increased energy generation coincides with the initiation of budding. The longer the generation time g the more expressed are these oscillations of energy formation over the budding cycle. The relationship between the course of energy generation and energy storage and the sequence of budding and single cell phase over the division cycle is discussed. 相似文献
15.
Aims: As there is no knowledge of the influence of abiotic factors on the two new ochratoxin A (OTA)‐producing species Aspergillus sclerotioniger and Aspergillus lacticoffeatus, the aim of this study was to evaluate the effect of temperature and incubation time on growth and OTA production by these species on culture media. Methods and Results: The study was carried out on yeast extract sucrose agar (YES) and Czapek yeast extract agar (CYA) incubated at ten different temperatures from 5 to 50°C (at 5°C intervals). Growth assessment and OTA production were determined after 5, 10, 15, 20 and 30 days of incubation at each temperature. Aspergillus sclerotioniger grew from 10 to 35°C; OTA was detected from 10 to 35°C and the highest concentration was achieved at 15°C in CYA. Aspergillus lacticoffeatus grew from 10 to 45°C; OTA was detected from 15 to 45°C, and the maximum concentration was produced after 5 days at 25°C in YES. Conclusions: The studied species can produce OTA over a wide range of temperatures and significant amounts can be produced in only 5 days. Significance and Impact of the Study: This is the first report on the influence of ecophysiological factors on these two ochratoxigenic species. The pattern of effects of temperature on growth and OTA production by A. sclerotioniger and A. lacticoffeatus was similar to those reported for the closely related species Aspergillus carbonarius and Aspergillus niger, respectively. The two new OTA‐producing species have both been isolated from coffee beans, and the closely related ochratoxigenic species of section Nigri, A. carbonarius and A. niger are important sources of OTA in this substrate. 相似文献
16.
Photodynamic therapy represents a new approach for the local control of cancers. It has recently been claimed that photodynamic therapy mediated by hematoporphyrin derivative (HPD) is selectively more efficient for killing leukemic cells than normal progenitors. To improve this effect, we studied the influence of hematoporphyrin dose, temperature during incubation and/or treatment, hematoporphyrin derivative incubation time, and fractionation of the argon laser light (488-514 nm) used for hematoporphyrin stimulation. Plating efficiency calculated after a 7-day period of growth on collagen gel medium showed a dose-dependent phototoxicity of HPD reaching 0.01% for normal hemopoietic progenitors and 0.001% for leukemic cells (dose = 12.5 micrograms/ml). The 10:1 ratio of normal hemopoietic progenitors to leukemic cells was also found to be the same or increased when temperature was 37 degrees C during incubation and 4 degrees C during laser irradiation. Similar results were also found when incubation time was varied from 75-120 min, or when laser irradiation dose was fractionated into 2 or 3 periods. The ratio of normal progenitors to leukemic cells reached 100:1 when 75 J/cm2 were fractionated into 3 periods after an incubation time of 120 min with 10 micrograms/ml HPD. Selectivity in photodynamic treatment seems to occur between normal hemopoietic progenitors and leukemic cells. The mechanism of this selectivity remains unclear, but experiments with the fractionated irradiation dose suggest that as in radiotherapy, better potentially lethal damage repair in normal cells could be a factor for selectivity in photodynamic therapy. Our results obtained with leukemic cells are fully in agreement with data in the literature concerning similar experimental models. 相似文献
17.
The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration 总被引:15,自引:0,他引:15
Arsenic absorption by rice (Oryza sativa, L.) in relation to the chemical form and concentration of arsenic added in nutrient solution was examined. A 4 × 3 × 2 factorial experiment was conducted with treatments consisting of four arsenic chemical forms [arsenite, As(III); arsenate, As(V); monomethyl arsenic acid, MMAA; and dimethyl arsenic acid, DMAA], three arsenic concentrations [0.05, 0.2, and 0.8 mg As L-1], and two cultivars [Lemont and Mercury] with a different degree of susceptibility to straighthead, a physiological disease attributed to arsenic toxicity. Two controls, one for each cultivar, were also included. Arsenic phytoavailability and phytotoxicity are determined primarily by the arsenic chemical form present. Application of DMAA increased total dry matter production. While application of As(V) did not affect plant growth, both As(III) and MMAA were phytotoxic to rice. Availability of arsenic to rice followed the trend: DMAA<As(V)<MMAA<As(III). Upon absorption, DMAA was readily translocated to the shoot. Arsenic(III), As(V), and MMAA accumulated in the roots. With increased arsenic application rates the arsenic shoot/root concentration decreased for the As(III) and As(V) treatments. Monomethyl arsenic acid (MMAA), however, was translocated to the shoot upon increased application. The observed differential absorption and translocation of arsenic chemical forms by rice is possibly responsible for the straighthead disorder attributed to arsenic. 相似文献
18.
A N Shkidchenko 《Mikrobiologiia》1975,44(2):228-232
The rate of glucose utilization is lower if Torulopsis latvica is grown on a medium with gradual addition of glucose cf. the complete growth medium. The threshold concentration of glucose, causing a decrease of the respiration activity of the culture, increases in the course of the growth of the microbial population. A correlation is established between the growth phases of the microbial population and the threshold concentration of glucose. 相似文献
19.
Conclusions Except for the pronounced adaptation-hysteresis effect, the pulse experiments exhibited the expected trend: deviation from the steady feed reference curve was greatest at lowest dilution rates. Under conditions of lowest glucose level the effect of pulsing would be expected to cause the largest fluctuations in glucose, causing a certain fraction of the cells to ferment. Generally over the entire dilution rate range the biomass production was decreased and the ethanol was increased by pulsing the feed stream. There is, however, some evidence that pulse feeding can trigger quite unexpected results. Point (6) at D=0.3 h–1 in Fig. 1 exhibit a biomass productivity which was about 20% greater than the continuous feeding reference value (DX=3.6 kg m–3 h–1 as compared with 3.0 kg m–3 h–1). Such performance would be of significant commercial value, but the poor reproducibility due to adaptation, as seen here, certainly would preclude its application.The results obtained should also be applicable to fed batch operation at the corresponding glucose level. Further experiments including the variation of the glucose feeding period would be necessary to obtain a conclusive picture. The observed phenomena are likely to occur in other fermentations and could eventually explain some of the problems existing with scale up of fermentation processes.Symbols D
dilution rate h–1
- P
product (ethanol) concentration kg m–3
- QO2
specific oxygen uptake rate mol kg–1 s–1
- QCO2
specific CO2 production rate mol kg–1 s–1
- S
substrate (glucose) concentration kg m–3
- X
biomass concentration kg m–3
- YP/S
yield of ethanol from glucose kg kg–1
- YX/S
yield of biomass from glucose kg kg–1 相似文献