首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The major covalently linked multimolecular D fragments found in plasmic digests of factor XIIIa cross-linked fibrin formed under physiological pH and ionic strength conditions consist of D dimers, D trimers, and D tetramers. These fragments are linked by epsilon-amino-gamma-glutamyllysine bonds in the carboxy-terminal regions of their gamma chains, which had originated in the cross-linked fibrin as gamma dimers, gamma trimers, and gamma tetramers, respectively. In this study, factors affecting the degree and rate of formation of these three classes of cross-linked gamma chains were determined by analyzing the D-fragment content of plasmic digests of cross-linked fibrin that had been sampled after all gamma-chain monomers had been consumed in the cross-linking process. D trimers and D tetramers, expressed as a proportion of the total D-fragment content, both increased at the expense of the D-dimer population as a function of increasing factor XIII concentration, the time of cross-linking, or the CaCl2 concentration. Their levels decreased as the ionic strength was raised by NaCl addition. However, the ionic strength effect could be reversed by concomitantly raising the CaCl2 concentration. Digests of clots prepared from recalcified fresh citrated plasma also contained each type of cross-linked D fragment, and the proportion of D trimers and D tetramers in the digest increased with increasing clot incubation time. These results indicate that gamma-trimer and gamma-tetramer formation is a dynamic physiological process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Native oligomers of three Pseudomonas aeruginosa outer membrane porin proteins and one Escherichia coli porin were demonstrated by using a chemical cross-linking technique. P. aeruginosa protein F, the major constitutive outer membrane porin, was cross-linked to dimers in outer membrane and whole-cell cross-linking experiments. Purified preparations of P. aeruginosa proteins F, D1 (glucose induced), and P (phosphate starvation induced) and E. coli protein PhoE (Ic) were also cross-linked to reveal dimers and trimers upon two-dimensional sodium dodecyl sulfate-polyacrylamide electrophoretic analysis. Cross-linking of protein F was abolished by pretreatment of the protein with sodium dodecyl sulfate, indicating that the cross-linked products were due to native associations in the outer membrane.  相似文献   

3.
Cell wall proteins of Aquaspirillum serpens.   总被引:4,自引:4,他引:0       下载免费PDF全文
The Triton X-100-insoluble wall fraction of Aquaspirillum serpens VHA contained three major proteins: the regularly structured (RS) superficial protein (molecular weight 140,000) and two peptidoglycan-associated proteins (molecular weights, 32,000 and 33,000). The molecular arrangement and interactions of the outer membrane and RS proteins were examined with the use of bifunctional cross-linking reagents. The peptidoglycan-associated and RS proteins were not readily cross-linked in either homo- or heteropolymers. This suggests that the free amino groups are not suitably disposed for cross-linking. Some high-molecular-weight multimers of the RS protein were produced, but the subunit structure of the RS array was not stabilized by cross-linking. The peptidoglycan-associated proteins were cross-linked to high-molecular-weight multimers, but no dimers or trimers were produced. This result suggests that these proteins exist in the outer membrane as multimers larger than trimers.  相似文献   

4.
We have used chemically cross-linked dimers, trimers, and tetramers of lymphocyte function-associated antigen-3 (LFA-3) to study the role of multivalency in the interaction of the protein with its receptor, CD2. The cross-linked adducts showed enhanced activity in systems where LFA-3 has been shown to (i) block LFA-3/CD2 interactions in a rosetting assay and (ii) provide through the CD2 on peripheral blood lymphocytes a trigger for T-cell proliferation. The level of increase was directly related to the valency state of the multimers. In the rosetting assay, the dimers, trimers, and tetramers, by weight, exhibited 15-, 150-, and 430-fold increases in activity over monomeric LFA-3. In the proliferation assay, the tetramer produced a 6-fold increase in thymidine incorporation at 0.06 micrograms/ml, the trimer was 100 times less active than the tetramer, and the dimer and monomer were inactive. The LFA-3 multimers were generated using a three-step cross-linking chemistry that was targeted at the carbohydrates on LFA-3. With this procedure over 60% of the starting protein was converted into multimers with no effect on function. The cross-linking approach should be applicable to other surface antigens, providing a simple method for analyzing multivalent interactions.  相似文献   

5.
The GA733-2 antigen (GA733) is a homotypic calcium-independent cell adhesion molecule (CAM) present in most normal human epithelial cells and gastrointestinal carcinomas. Because oligomerization of some CAMs regulates cell adhesion and signal transduction, the correlation between GA733 oligomeric state and cell-cell adhesion was investigated. Sedimentation equilibrium studies showed that full-length (-FL) GA733 exists as dimers and tetramers in solution, whereas the GA733 extracellular domain (-EC) is a monomer. The Kd of GA733-FL is less than 10 nm for the monomer-dimer association, whereas the dimer-tetramer association is about 1000-fold weaker (Kd approximately 10 microm). Chemical cross-linking of purified GA733-FL in solution resulted in a major product corresponding to GA733 dimers, and minor amounts of trimers and tetramers. However, GA733-EC cross-linked under the same conditions was consistently a monomer. Chemical cross-linking of dissociated colon carcinoma cells produced predominantly GA733 dimers, whereas cross-linking of cells in monolayers yielded some tetramers as well. GA733-FL retained its cell-cell adhesion function as shown by inhibition of cell aggregation, whereas monomeric GA733-EC was inactive. These data show that GA733 exists predominantly as high affinity noncovalent cis-dimers in solution and on dissociated colon carcinoma cells. The lower affinity association of dimers to form tetramers is most likely the head-to-head interaction between GA733 cis-dimers on opposing cells that represents its cell-cell adhesion activity.  相似文献   

6.
70 S ribosomes from Escherichia coli have been reacted with the bifunctional reagent 1,4-phenyldiglyoxal under near physiological conditions. As a result of the cross-linking reaction a number of high-molecular-weight protein fractions with altered electrophoretic mobility could be isolated. A new chemical procedure has been introduced to reverse the cross-links between proteins at least partially. The cleavage reaction did not affect the gel electrophoretic mobility of the proteins. Thus a direct identification of cross-linked proteins using one- or two-dimensional gels was made possible. Two protein trimers, S3-S4-S5 and L1-S4-S5, as well as five protein dimers, S3-S4, L6-L7/12, L10-L7/12, S9-L19 and L18-L19 could be identified as close neighbours in the E. coli 70 S ribosome. The protein pairs S9-L19 and L18-L19 had previously not been identified as near neighbours using cross-linking studies.  相似文献   

7.
Staphylococcus aureus H was grown for 4 generation times with various sub-growth-inhibitory concentrations of beta-lactam antibiotics specific for particular penicillin-binding proteins (PBPs) - PBP2, clavulanic acid; PBP3, methicillin; PBP4, cefoxitin - and also with the non-specific benzylpenicillin. Isolated cell walls were digested with Chalaropsis muramidase and the resulting peptidoglycan fragments were fractionated by HPLC into disaccharide-peptide monomers and cross-linked dimers, trimers, tetramers and greater oligomers. The pattern of relative fragment concentrations with increasing amounts of drug was roughly the same regardless of the antibiotic used, monomers and dimers increasing while trimers and tetramers changed little and oligomers decreased rapidly. The patterns resembled closely those predicted by the 'random addition' model for multiple cross-link formation and not at all those predicted by the 'monomer addition' model. The O-acetylation of the peptidoglycan remained essentially unaffected under all these conditions. S. aureus MR-1, a constitutive producer of PBP2', gave similar results when treated with methicillin.  相似文献   

8.
The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability.  相似文献   

9.
When whole steer kidney nuclei were treated with dimethyl-3,3'-dithiobisproprionimidate, N,N'-bis(2-carboxyimidomethyl) tartaramide dimethyl ester, or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide under approximately physiological ionic conditions, H1 histone was cross-linked to each of the four histones in the nucleosome core. The carbodiimide reagent, which introduces no atoms between the amino acid side chains being joined, seemed to give the same result as did the longer di-imidate cross-linking reagents. When conditions were optimized for the production of of H1-containing dimers, the total yield of H1-core histone heterodimers was nearly equal to the yield of H1 homodimers. Naturally occurring H1 dimers and cross-linked heterodimers of high mobility group proteins 14 and 17 with H1 and core histones were also observed.  相似文献   

10.
Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures.   总被引:15,自引:11,他引:4       下载免费PDF全文
Sucrose gradient sedimentation analysis of rotavirus SA11-infected Ma104 cells revealed the presence of oligomers of VP7, the structural glycoprotein, and NS28, the nonstructural glycoprotein. Cross-linking the proteins, either before or after sucrose gradient centrifugation, stabilizes oligomers, which can be analyzed by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation. The major NS28 oligomer was tetrameric, though dimers and higher-order structures were observed as well. VP7 formed predominantly dimers, and again tetramers and higher oligomeric forms were present. Each oligomer of VP7 and NS28 sedimented at the same characteristic rate through the sucrose gradient either in the presence or absence of cross-linking. Monomers could not be cross-linked to form oligomers, demonstrating that cross-linked oligomers were not artifactually derived from monomers. Reversing the cross-linking of immunoprecipitated VP7 on reducing SDS-PAGE resulted in the appearance of only the monomeric form of VP7. Dissociation of the NS28 oligomers resulted in stable dimers as well an monomers. In the faster-sedimenting fractions, a 16S to 20S complex, which contained the rotavirus outer shell proteins VP7 and VP4 cross-linked to NS28, was observed. These complexes were shown not to be associated with any known subviral particle. The association of VP4, NS28, and VP7 may represent sites on the endoplasmic reticulum membrane that participate in the budding of the single-shelled particles into the lumen of the endoplasmic reticulum, where maturation to double-shelled particles occurs.  相似文献   

11.
The binding of epidermal growth factor (EGF) to its plasma membrane receptor results in the stimulation of a tyrosyl residue-specific protein kinase, which has been shown to be part of the receptor. The mechanism by which EGF binding give rise to the stimulation of kinase activity is not understood in detail; however, a number of recent studies have implicated receptor dimerization or oligomerization in this process. We prepared Triton X-100 extracts of A431 cells in which the concentration of EGF receptors was on the order of 10(-7) M. When samples of the extracts were incubated with or without EGF and then treated with the high-yield cross-linking reagent bis(sulfosuccinimidyl)suberate (BS3), covalent receptor dimers could be detected in high yield in samples that had been treated with both EGF and BS3, whereas only monomeric receptor was detected in untreated samples or in samples that had been treated with either EGF or BS3. The yield of receptor dimers trapped by cross-linking correlated with the stimulation of autophosphorylation by EGF and with the concentration of EGF present. EGF-induced receptor dimers were also efficiently cross-linked in highly purified receptor preparations, suggesting that EGF-induced dimerization is a process intrinsic to the receptor, requiring no additional accessory proteins.  相似文献   

12.
We describe the reactions of three lipophilic, photoactivated cross-linking reagents, 1,5-diazidonapthalene, 4,4'-diazidobiphenyl, and the reversible 4,4'-dithiobisphenylazide, with erythrocyte membranes. Cross-linking occurs only upon photoactivation. At pH 7 to 8, only spectrin components are cross-linked by these reagents. At pH 5.0 to 5.5 several additional membrane proteins including the major "integral" membrane proteins are also cross-linked, despite equivalent binding of the cross-linkers at neutral and acid pH. The cross-linking rates of various membrane proteins at pH 5.0 to 5.5 depend distinctly upon duration of photoactivation. Bidimensional electrophoresis of membrane proteins after cross-linking with the reversible cross-linker, 4,4'-dithiobisphenylazide, has allowed for the identification of homopolymeric products of cross-linking (e.g. dimers and tetramers of Band 3) and heterocomplexes (spectrin plus other membrane proteins). The data suggest that at reduced pH, cross-linking can proceed not only at the membrane surface but also in the membrane core.  相似文献   

13.
Elucidation of the structure of PrP(Sc) continues to be one of the most important and difficult challenges in prion research. This task, essential for gaining an understanding of the basis of prion infectivity, has been hampered by the insoluble, aggregated nature of this molecule. We used a combination of chemical cross-linking, proteolytic digestion, and mass spectrometry (MALDI-TOF and nanoLC-ESI-QqTOF), in an attempt to gain structural information about PrP 27-30 purified from the brains of Syrian hamsters infected with scrapie. The rationale of this approach is to identify pairs of specific amino acid residues that are close enough to each other to react with a bifunctional reagent of a given chain length. We cross-linked PrP 27-30 with the amino-specific reagent bis(sulfosuccinimidyl) suberate (BS(3)), obtaining dimers, trimers, and higher-order oligomers that were separated by SDS-PAGE. In-gel digestion followed by mass spectrometric analysis showed that BS(3) reacted preferentially with Gly90. A cross-link involving two Gly90 amino termini was found in cross-linked PrP 27-30 dimers, but not in intramolecularly cross-linked monomers or control samples. This observation indicates the spatial proximity of Gly90 amino termini in PrP 27-30 fibrils. The Gly90-Gly90 cross-link is consistent with a recent model of PrP 27-30, based on electron crystallographic data, featuring a fiber composed of stacked trimers of PrP monomers; specifically, it is compatible with cross-linking of monomers stacked vertically along the fiber axis but not those adjacent to each other horizontally in the trimeric building block. Our results constitute the first measured distance constraint in PrP(Sc).  相似文献   

14.
The early stages of heat induced aggregation at 67.5 degrees C of beta-lactoglobulin were studied by combined static light scattering and size exclusion chromatography. At all conditions studied (pH 8.7 without salt and pH 6.7 with or without 60 mM NaCl) we observe metastable heat-modified dimers, trimers, and tetramers. These oligomers reach a maximum in concentration at about the time when large aggregates (1000-4000 kg/mol) appear, after which they decline in concentration. By isolating the oligomers it was demonstrated that they rapidly form aggregates upon heating in the absence of monomeric protein, showing that these species are central to the aggregation process. To our knowledge this is the first time that intermediates in protein aggregation have been isolated. At all stages of aggregation the dominant oligomer was the heat-modified dimer. Whereas the heat-modified oligomers are formed at a higher rate at pH 8.7 than at pH 6.7, the opposite is the case for the formation of aggregates from the metastable oligomers indicating cross-linking via disulfide bridges for the oligomers and noncovalent interaction in the formation of the aggregates. The data suggest that an aggregate nucleus is formed from four oligomers. For protein concentrations of 10 or 20 g/l a heat-modified monomer can be observed until about the time when the maximum in concentration appears of the heat-modified dimer. The disappearance of this heat-modified monomer correlates to the formation of dimers (trimers and tetramers).  相似文献   

15.
J Wolff  J Hwang  D L Sackett  L Knipling 《Biochemistry》1992,31(16):3935-3940
Pure rat brain tubulin can be cross-linked by ultraviolet irradiation of tubulin-colchicine complexes at the high-wavelength maximum of colchicine to form covalent dimers greater than trimers greater than tetramers. With colchicine concentrations approximately 3 x 10(-4) M (mole ratio to tubulin 3-12) and irradiation for 5-10 min at 95-109 mW/cm2, the yield of dimers is 11-17% and of trimers is 4-6% of the total tubulin. The oligomers show polydispersity and anomalously high apparent molecular masses that converge toward expected values in low-density gels. Maximal dimer yields are obtained with MTC and the decreasing photosensitizing potency is MTC greater than colchicine greater than colchicide greater than isocolchicine greater than thiocolchicine. Single-ring troponoids also promote dimerization. Evidence is presented suggesting that the initial, low-affinity, binding step of colchicine and its analogues is sufficient to photosensitize tubulin dimerization.  相似文献   

16.
We examine biochemical characteristics of the herpes simplex virus (HSV) tegument protein VP22 by gel filtration, glycerol sedimentation, and chemical cross-linking experiments and use time course radiolabeling and immunoprecipitation assays to analyze its synthesis and interaction with other infected-cell proteins. VP22 was expressed as a delayed early protein with optimal synthesis requiring DNA replication. In immunoprecipitation assays, VP22 was found in association with several additional proteins including VP16 and a kinase activity likely to be that of UL13. Furthermore, in sizing chromatography experiments, VP22 was present in several higher-order complexes in infected cells. From gel filtration analysis the major form of VP22 migrated with a molecular mass of approximately 160 kDa, consistent with its presence as a tetramer, or a dimer complexed with other proteins, with a fraction of the protein migrating at larger molecular mass. In vitro-synthesized VP22 sedimented in a size range consistent with a mixture of tetramers and dimers. Short N- or C-terminal deletions resulted in migration almost exclusively as dimers, indicating that VP22, in the absence of additional virus-encoded proteins, could form higher-order assemblies, most likely tetramers, but that both N-and C-terminal determinants were required for stabilizing such assemblies. Consistent with this we found that isolated proteins encompassing either the N-terminal or C-terminal region of VP22 sedimented as dimers, and that the purified C-terminal domain could be cross-linked into dimeric structures. These results are discussed with regard to possible virus and host interactions involved in VP22 recruitment into virus particles.  相似文献   

17.
Ribonuclease A aggregates (dimers, trimers, tetramers, pentamers) can be obtained by lyophilization from 40% acetic acid solutions. Each aggregate forms two conformational isomers distinguishable by different basic net charge. The crystal structure of the two dimers has recently been determined; the structure of the higher oligomers is unknown. The results of the study of the two trimeric and tetrameric conformers can be summarized as follows: (1) RNase A trimers and tetramers form by a 3D domain-swapping mechanism. N-terminal and C-terminal types of domain swapping could coexist; (2) the secondary structures of the trimeric and tetrameric conformers do not show significant differences if compared with the secondary structure of monomeric RNase A or its two dimers; (3) a different exposure of tyrosine residues indicates that in the aggregates they have different microenvironments; (4) the two trimeric and tetrameric conformers show different susceptibility to digestion by subtilisin; (5) dimers, trimers, and tetramers of RNase A show unwinding activity on double-helical poly(dA-dT) x poly(dA-dT), that increases as a function of the size of the oligomers; (6) the less basic conformers are more stable than the more basic ones, and a low concentration in solution of trimers and tetramers favors their stability, which is definitely increased by the interaction of the aggregates with poly(dA-dT) x poly(dA-dT); (7) the products of thermal dissociation of the two trimers indicate that their structures could be remarkably different. The dissociation products of the two tetramers allow the proposal of two models for their putative structures.  相似文献   

18.
T P King  Y Li  L Kochoumian 《Biochemistry》1978,17(8):1499-1506
Conjugates of two unlike proteins can be prepared via the intermolecular disulfide interchange reaction, namely, protein A containing thiol groups reacts with protein B containing 4-dithiopyridyl groups to yield a conjugate with the release of 4-thiopyridone. Thiol groups can be introduced into proteins upon amidination with methyl 3-mercaptopropionimidate ester or 2-iminothiolane, and 4-dithiopyridyl groups can be introduced into proteins with these same reagents in the presence of 4,4'-dithiodipyridine. 2-Iminothiolane is stable on storage in contrast to the known lability of imidate esters; therefore 2-iminothiolane is a more convenient reagent for the modification of protein than are the imidate esters. All the reactions can be carried out easily under mild conditions in good yields. Conjugates of bovine plasma albumin with itself, ribonuclease, or a copolymer of D-glutamic acid and D-lysine and of sheep antibody and horseradish peroxidase were prepared with modified proteins containing an average of 1 to 5 thiol or dithiopyridyl groups per mol. These conjugates formed mainly dimers, trimers, and tetramers. The peroxidase labeled antibody retained more than 80% of its enzymatic and antigenic binding activities.  相似文献   

19.
The arrangement of subunits of ribulosebisphosphate carboxylase in solution has been studied by exposing the enzyme to the cross-linking agents tetranitromethane, dimethyl suberimidate, and dimethyl adipimidate, and the cleavable cross-linking agent, methyl 4-mercaptobutyrimidate followed by gel electrophoresis in the presence of dodecyl sulfate. All these agents caused the formation of dimers of the enzyme's small subunit, independently of protein concentration. In addition, trimers and tetramers of small subunit were detected in the mercaptobutyrimidate-treated enzyme. The data show that small subunits are closely paired in the native enzyme and may be in layers of four, or a ring of eight.  相似文献   

20.
All large ribosomal subunits contain two dimers composed of small acidic proteins that are involved in binding elongation factors during protein synthesis. The ribosomal location of the C-terminal globular domain of the Escherichia coli ribosomal acidic protein L7/L12 has been determined by protein cross-linking with a new heterobifunctional, reversible, photoactivatable reagent, N-[4-(p-azidosalicylamido)-butyl]-3-(2'-pyridyldithio)propionamide . Properties of this reagent are described. It was first radiolabeled with 125I and then attached through the formation of a disulfide bond to a unique cysteine of L7/L12, introduced by site-directed mutagenesis at residue 89. Intact 50S ribosomal subunits were reconstituted from L7/L12-depleted cores and the radiolabeled L7/L12Cys89. Irradiation of the reconstituted subunits resulted in photo-cross-linking between residue 89 and other ribosomal components. Reductive cleavage of the disulfide cross-link resulted in transfer of the 125I label from L7/L12Cys89 to the other cross-linked components. Two radiolabeled proteins were identified, L11 and L10. The location of both of these proteins is well established to be at the base of the L7/L12 stalk near the binding sites for the N-terminal domain of both L7/L12 dimers, and for elongation factors. The result indicates that L7/L12 can have a bent conformation bringing the C-terminal domain of at least one of the L7/L12 dimers at or near the factor-binding domain. The cross-linking method with radiolabeled N-[4-(p-azidosalicylamido)butyl]-3-(2'-pyridyldithio)propionamide should be applicable for studies of other multicomponent complexes that can be reconstituted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号