首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eosin-5-maleimide is impermeable to the inner mitochondrial membrane, exhibiting essentially no reactivity with matrix glutathione or with beta-hydroxybutyrate dehydrogenase located on the matrix surface of the inner membrane. In intact mitochondria, eosin-5-maleimide is unreactive with the ADP/ATP antiporter even under conditions which promote maximal labeling by N-[3H]ethylmaleimide (i.e., ADP present). However, eosin-5-maleimide readily labels the ADP/ATP antiporter in "inverted" inner membrane vesicles even in the presence of N-ethylmaleimide. Labeling is prevented if the vesicles are prepared from mitochondria pretreated with carboxyatractyloside. In contrast to the ADP/ATP antiporter, essential sulfhydryl groups of the Pi/H+ symporter are accessible to eosin-5-maleimide in intact mitochondria with optimal inhibition of phosphate transport being observed at 25 degrees C. Eosin-5-maleimide also prevents labeling of the Pi/H+ symporter by N-[3H]ethylmaleimide. These results show that essential sulfhydryl groups of the ADP/ATP antiporter and the Pi/H+ symporter have differing reactivities and locations in functionally intact mitochondria. With respect to eosin-5-maleimide, sulfhydryl groups of the ADP/ATP carrier occur in two distinct classes, both of which are inaccessible in intact mitochondria. Only one class, depending on conditions, can be exposed in submitochondrial particles. In contrast, sulfhydryl group(s) of the Pi/H+ symporter behave as a single reactive class which is readily accessible in mitochondria at 25 degrees C.  相似文献   

2.
P Jezek 《FEBS letters》1987,211(1):89-93
Mersalyl inhibits H+ transport via the uncoupling protein (UP) in brown adipose tissue (BAT) mitochondria estimated as swelling in potassium acetate (Ki 67 microM) or as valinomycin-induced H+ extrusion in K2SO4 (Ki 55 microM) and KCl. The swelling in KCl is depressed only slightly. Some other SH-reagents (p-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoate) and thiolyte DB), but not hydrophobic reagents (N-ethylmaleimide and eosin-5-maleimide), exhibit analogous inhibition. Thus an essential SH-group localized at the water-accessible cytosolic surface of UP was found to be involved in H+ transport via UP but not in Cl- transport.  相似文献   

3.
M Müller  A Azzi 《FEBS letters》1985,184(1):110-114
Cytochrome c oxidase has been isolated from beef heart mitochondria and labeled with the fluorochrome eosin-5-maleimide (EMA) after pretreatment with mersalyl. On SDS-polyacrylamide gels, EMA fluorescence and absorption occurred at a single band corresponding to subunit III. Since only Cys 115 of the two cysteinyl residues of subunit III had been shown to be reactive towards water-soluble SH-reagents, it was concluded that this residue was the one labeled by EMA. The EMA/enzyme ratio was about 1. Gel filtration experiments have shown that upon treatment with dicyclohexylcarbodiimide, subunit III was loosened from the complex; this result suggests that the inhibitory effect of dicyclohexylcarbodiimide on the H+-translocation activity may be related to such a phenomenon.  相似文献   

4.
Human acyl-coenzyme A:cholesterol acyltransferase 1 (hACAT1) esterifies cholesterol at the endoplasmic reticulum (ER). We had previously reported that hACAT1 contains seven transmembrane domains (TMD) (Lin, S., Cheng, D., Liu, M. S., Chen, J., and Chang, T. Y. (1999) J. Biol. Chem. 274, 23276-23285) and nine cysteines. The Cys near the N-terminal is located at the cytoplasm; the two cysteines near the C-terminal form a disulfide bond and are located in the ER lumen. The other six free cysteines are located in buried region(s) of the enzyme (Guo, Z.-Y., Chang, C. C. Y., Lu, X., Chen, J., Li, B.-L., and Chang, T.-Y. (2005) Biochemistry 44, 6537-6548). In the current study, we show that the conserved His-460 is a key active site residue for hACAT1. We next performed Cys-scanning mutagenesis within the region of amino acids 354-493, expressed these mutants in Chinese hamster ovary cells lacking ACAT1, and prepared microsomes from transfected cells. The microsomes are either left intact or permeabilized with detergent. The accessibility of the engineered cysteines of microsomal hACAT1 to various maleimide derivatives, including mPEG(5000)-maleimide (large, hydrophilic, and membrane-impermeant), N-ethylmaleimide, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (small, hydrophilic, and ER membrane-permeant), and N-phenylmaleimide (small, hydrophobic, and ER membrane-permeant), were monitored by Western blot analysis. The results led us to construct a revised, nine-TMD model, with the active site His-460 located within a hitherto undisclosed transmembrane domain, between Arg-443 and Tyr-462.  相似文献   

5.
Excimer-forming cysteines in tubulin are detected by the presence of excimer fluorescence in N-(1-pyrenyl)maleimide-labeled tubulin. The ratio of excimer/monomer fluorescence of labeled protein remained unchanged upon its dilution. These results indicating that both partner of each pair(s) of cysteine are located in the same subunit. The excimer fluorescence is insensitive to prior treatment of tubulin with either colchicine or GTP, indicating that pairs of cysteines protected by those drugs are not involved in excimer formation. This excimer fluorescence of N-(1-pyrenyl)maleimide-labeled tubulin disappeared upon treatment with SDS, guanidinium chloride (GdmCl) and urea. Studies with GdmCl induced unfolding of N-(1-pyrenyl)maleimide-labeled tubulin showed that the loss of excimer fluorescence precedes subunit dissociation. The loss of both colchicine-binding activity and the excimer fluorescence with increasing temperature indicates a major conformational change of the tubulin molecule at elevated temperatures.  相似文献   

6.
Ligandin (glutathione S-transferase B, EC 2.5.1.18)was treated with p-mercuribenzoate, N-(4-dimethylamino-3,5-dinitrophenyl)-maleimide, 5,5,-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide, iodoacetamide or iodoacetate. Although performic acid oxidation revealed the presence of four cysteines, p-mercuribenzoate and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide, the most effective of the reagents studied, reacted with only three residues. N-Ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) each reacted with two cysteines: iodoacetamide reacted with only one cysteine and iodoacetate was essentially unreactive. Modification of three thiol groups decreased both the enzymic and binding activities of ligandin although the number of binding sites was unaffected. Modification of only one or two of the thiol groups had little effect on the ligandin activities. It therefore appears that there is a thiol group in the common hydrophobic-ligand- and substrate-binding site of ligandin. Ligandin was separated into two fractions on CM-cellulose. Both fractions gave the same results with p-mercuribenzoate and iodoacetamide.  相似文献   

7.
Summary Several fluorescent maleimide compounds were evaluated as possible substitutes for N-(4-aminophenyl)maleimide in the histochemical procedures developed by Sippel (1973, 1978a, b, 1980) for the demonstration of sulfhydryl and disulfide groups. The brightest and most selective fluorescence was obtained by using N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM), although both eosin-5-maleimide and fluorescein-5-maleimide could also be used if adequate control preparations were made.  相似文献   

8.
The role and properties of -SH groups of purified pyruvate (monocarboxylate) carrier were investigated. After isolation, this protein has all -SH groups in the oxidized state. Upon reduction, the carrier can be labelled with eosin-5-maleimide. The shift in apparent Mr after the labelling points to the presence of at least two cysteine residues. Pyruvate uptake in the reconstituted system is inhibited by both permeable (eosin-5-maleimide at 1 mM concentration) and impermeable (mersalyl, p-chloromercuribenzoate) -SH group reagents. Phenylarsine oxide inhibits pyruvate transport only slightly (20%), but the inhibition is enhanced after preincubation with the substrate.  相似文献   

9.
Porin, an intrinsic protein of outer mitochondrial membranes of rat liver, was synthesized in vitro in a cell-free in a cell-free translation system with rat liver RNA. The apparent molecular mass of porin synthesized in vitro was the same as that of its mature form (34 kDa). This porin was post-translationally integrated into the outer membrane of rat liver mitochondria when the cell-free translation products were incubated with mitochondria at 30 degrees C even in the presence of a protonophore (carbonyl cyanide m-chlorophenylhydrazone). Therefore, the integration of porin seemed to proceed energy-independently as reported by Freitag et al. [(1982) Eur. J. Biochem. 126, 197-202]. Its integration seemed, however, to require the participation of the inner membrane, since porin was not integrated when isolated outer mitochondrial membranes alone were incubated with the translation products. Porin in the cell-free translation products bound to the outside of the outer mitochondrial membrane when incubated with intact mitochondria at 0 degrees C for 5 min. When the incubation period at 0 degrees C was prolonged to 60 min, this porin was found in the inner membrane fraction, which contained monoamine oxidase, suggesting that porin might bind to a specific site on the outer membrane in contact or fused with the inner membrane (a so-called OM-IM site). This porin bound to the OM-IM site was integrated into the outer membrane when the membrane fraction was incubated at 30 degrees C for 60 min. These observations suggest that porin bound to the outside of the outer mitochondrial membrane is integrated into the outer membrane at the OM-IM site by some temperature-dependent process(es).  相似文献   

10.
Porin, a protein able to form ionic channels in model phospholipid membranes, has been isolated for the first time from bovine heart mitochondria. One-dimensional electrophoresis in the presence of sodium dodecyl sulfate revealed a major band with Mr of 32-34 kDa. On two-dimensional electrophoregrams this protein is represented by four components with pI ranging from 6.5 to 7.1. Porin spots were identified on two-dimensional electrophoregrams in a complete mixture of mitochondrial proteins. The presence of porin in bovine heart submitochondrial particles was demonstrated by two-dimensional electrophoresis.  相似文献   

11.
The ADP/ATP translocator was selectively labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide in beef heart mitochondria, as reported previously for submitochondrial particles (Müller, M., Krebs, J. J. R., Cherry, R. J., and Kawato, S. (1982) J. Biol. Chem. 257, 1117-1120). The EMA binding was completely inhibited by carboxyatractylate. 0.7-1.1 molecules of EMA conjugated with 1 molecule of the dimeric translocator with Mr approximately 65,000. The EMA binding decreased [14C]ADP uptake by about approximately 25%. The EMA-labeled translocator bongkrekate complex was purified and reconstituted in liposomes by removing Triton X-100 with Amberlite XAD-2. The liposomes were composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin and the lipid to protein ratio by weight was (L/P) = 60. Rotational diffusion of the ADP/ATP translocator around the membrane normal was measured in reconstituted proteoliposomes and in the mitochondrial inner membranes by observing the flash-induced absorption anisotropy, r(t), of EMA. In proteoliposomes with L/P = 60, the translocator was rotating with an approximate average rotational relaxation time of phi congruent to 246 microseconds and a normalized time-independent anisotrophy [r3/rr(0)]min congruent to 0.55. In intact mitochondria, values of phi congruent to 405 microseconds and r3/rr(0) congruent to 0.79 were obtained. The higher value of r3/rr(0) in mitochondria compared with proteoliposomes indicates the co-existence of rotating and immobile translocator (phi greater than 20 ms) in the inner mitochondrial membrane. Based on the assumption that all the translocator is rotating in the lipid-rich proteoliposomes, the population of the mobile translocator at 20 degrees C was calculated to be approximately 47%. By removing the outer membrane, the mobile population was increased to approximately 70% in mitoplasts, while approximately 53% of the translocator was rotating in submitochondrial particles. The above results indicate a significant difference in protein-protein interactions of the ADP/ATP translocator in the different types of inner membranes of mitochondria. The immobile population of the translocator could be due to nonspecific protein aggregates caused by the very high concentration of proteins in the inner membrane of mitochondria (L/P approximately 0.4).  相似文献   

12.
Human RNase H1 is active only under reduced conditions. Oxidation as well as N-ethylmaleimide (NEM) treatment of human RNase H1 ablates the cleavage activity. The oxidized and NEM alkylated forms of human RNase H1 exhibited binding affinities for the heteroduplex substrate comparable with the reduced form of the enzyme. Mutants of human RNase H1 in which the cysteines were either deleted or substituted with alanine exhibited cleavage rates comparable with the reduced form of the enzyme, suggesting that the cysteine residues were not required for catalysis. The cysteine residues responsible for the observed redox-dependent activity of human RNase H1 were determined by site-directed mutagenesis to involve Cys(147) and Cys(148). The redox states of the Cys(147) and Cys(148) residues were determined by digesting the reduced, oxidized, and NEM-treated forms of human RNase H1 with trypsin and analyzing the cysteine containing tryptic fragments by micro high performance liquid chromatography-electrospray ionization-Fourier transform ion cyclotron mass spectrometry. The tryptic fragment Asp(131)-Arg(153) containing Cys(147) and Cys(148) was identified. The mass spectra for the Asp(131)-Arg(153) peptides from the oxidized and reduced forms of human RNase H1 in the presence and absence of NEM showed peptide masses consistent with the formation of a disulfide bond between Cys(147) and Cys(148). These data show that the formation of a disulfide bond between adjacent Cys(147) and Cys(148) residues results in an inactive enzyme conformation and provides further insights into the interaction between human RNase H1 and the heteroduplex substrate.  相似文献   

13.
14.
We have investigated the transmembrane topology of the bovine heart mitochondrial porin by means of proteases and antibodies raised against the amino-terminal region of the protein. The antisera against the human N-terminus reacted with porin in Western blots of NaDodSO4-solubilized bovine heart mitochondria and with the membrane-bound porin in enzyme-linked immunosorbent assay (ELISA). The immunoreaction with mitochondria coated on microtiter wells showed that the amino-terminal region of the protein is not embedded in the lipid bilayer but is exposed to the cytosol. Back-titration of unreacted anti-N-terminal antibodies after their incubation with intact mitochondria demonstrated that the porin N-terminus is also exposed in "noncoated" mitochondria. No difference in antisera reactivity was observed between intact and broken mitochondria. Intact and broken mitochondria were subjected to proteolysis by specific proteases. The membrane-bound bovine heart porin was strongly resistant to proteolysis, but a few specific cleavage sites were observed. Staphylococcus aureus V8 protease gave a large 24K N-terminal peptide, trypsin produced a 12K N-terminal and an 18K C-terminal peptide, and chymotrypsin gave two peptides of Mr 19.5K and 12.5K, which were both recognized by the antiserum against the human N-terminus. Carboxypeptidase A was ineffective in cleaving the membrane-bound porin in both intact and broken mitochondria. Thus, the carboxy-terminal part of the protein is probably not exposed to the water phase. The cleavage patterns of membrane-bound porin, obtained with S. aureus V8 protease, trypsin, and chymotrypsin, showed no difference between intact and broken mitochondria, thus indicating that all porin molecules have the same orientation in the membrane. The computer analysis of the sequence of human B-lymphocyte porin suggested that 16 beta-strands can span the phospholipid bilayer. This result, together with the overall information presented, allowed us to draw a possible scheme of the transmembrane arrangement of mammalian mitochondrial porin.  相似文献   

15.
Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.  相似文献   

16.
The bulk of NADH kinase of Saccharomyces cerevisiae was recovered in the mitochondrial fraction prepared from spheroplasts. Most of the NADH kinase was localized in the inner membrane fraction, which was separated from other mitochondrial components by the combined swelling, shrinking, and sonication procedure. Treatment of mitoplasts with antiserum against the NADH kinase caused inactivation of the enzyme. On the contrary, no influence was observed upon the same treatment of intact mitochondria. p-Chloromercuribenzoate and eosin-5-maleimide inactivated the enzyme without affecting the matrix ATPase. The NADH kinase was enzymatically iodinated in mitoplasts, but not in the intact mitochondria. These results support the conclusion that NADH kinase is localized and functions at the intermembrane space side of the mitochondrial inner membrane. It is evident that the NADH kinase is encoded by nuclear gene(s) because it is synthesized in the presence of chloramphenicol or acriflavine, and a significant amount of the enzyme was detected in mitochondrial DNA-deficient mutants.  相似文献   

17.
We characterize and describe for the first time the primary structure of a human porin with the molecular mass of 31 kDa derived from the plasmalemm of B-lymphocytes (Porin 31HL). Porin 31HL is shown to be a basic, channel forming membrane protein. The protein chain is composed of 282 amino acids with a relative molecular mass of 30641 Da without derivatisation. It is not a glycoprotein. The N-terminus is acetylated. Altogether the amino-acid sequence shows 56% hydrophilic or charged amino acids arranged in alternating regions of hydrophilic or hydrophobic character as it is typical for porins. In addition the 18 N-terminal amino acids of Porin 31HL can be arranged to an amphilic alpha-helix like in other porins. Porin 31HL shows approx. 29% or 24% identity to the primary structure of mitochondrial porins of Neurospora crassa and Saccharomyces cerevisiae. Partial data on mitochondrial porins from rat kidney and beef heart show sequence identity of about 90% to the human B cell porin elaborated here.  相似文献   

18.
In this work, we studied the effect of N-ethylmaleimide on permeability transition. The findings indicate that the amine inhibited the effects of carboxyatractyloside and agaric acid. It is known that these reagents interact with the adenine nucleotide carrier through the cytosolic side. When oleate, which interacts through the matrix side, was used it was found that the amine amplified the effects of oleate on permeability transition. The results also show that N-ethylmaleimide strengthened the inhibition induced by carboxyatractyloside, agaric acid, and oleate on ADP exchange. Furthermore, it was also found that oleate improved the binding of eosin-5-maleimide on the adenine nucleotide translocase.  相似文献   

19.
J Duszynski  A Dupuis  B Lux  P V Vignais 《Biochemistry》1988,27(17):6288-6296
In order to study the kinetics and the nature of the interactions between the oligomycin sensitivity conferring protein (OSCP) and the F0 and F1 sectors of the mitochondrial ATPase complex, fluorescent derivatives of OSCP, which are fully biologically active, have been prepared by reaction of OSCP with the following fluorescent thiol reagents: 6-acryloyl-2-(dimethylamino)naphthalene (acrylodan), 2-(4-maleimidylanilino)naphthalene-6-sulfonic acid (Mal-ANS), N-(1-pyrenyl)maleimide (Mal-pyrene), 7-(diethylamino)-3-(4-maleimidylphenyl)-4-methylcoumarin (Mal-coumarin), and fluorescein 5-maleimide (Mal-fluorescein). The preparation of these derivatives was based on the previous finding that the single cysteinyl residue of OSCP, Cys 118, can be covalently modified by alkylating reagents without loss of biological activity [Dupuis, A., Issartel, J. P., Lunardi, J., Satre, M., & Vignais, P. V. (1985) Biochemistry 24, 728-733]. For all fluorescent probes used, except Mal-pyrene and Mal-fluorescein, the emission spectra of conjugated OSCP were blue-shifted relative to those of the corresponding mercaptoethanol adducts, indicating that the fluorophores attached to Cys 118 were located in a hydrophobic pocket. These results were consistent with the high quantum yields and the increased fluorescence lifetimes of conjugated OSCP compared to mercaptoethanol adducts in aqueous buffer. They also fit with quenching data obtained with potassium iodide which showed that the fluorophore is shielded from the aqueous medium when it is attached to Cys 118 of OSCP. Especially noticeable was the wide half-width of the OSCP-acrylodan emission peak compared to that of mercaptoethanol-acrylodan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
B Malm 《FEBS letters》1984,173(2):399-402
Chemical modification of the cysteine residue 374 of actin, both with N-ethylmaleimide and with the fluorescent probe N-(1-pyrenyl)iodoacetamide, is shown to counteract the inhibiting effect of profilin on actin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号