首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Lysozyme from bacteriophage T4 was found to digest a soluble, uncrosslinked peptidoglycan which is secreted by cells of Micrococcus luteus when incubated in the presence of penicillin G. Analysis of the enzymatic degradation products shows that T4 acts as an endo-acetylmuramidase capable of cleaving glycosidic bonds only at muramic acid residues that are substituted with peptide side-chains. The results indicate that the secreted peptidoglycan may consist of a mixture of chains, approximately half of which are substituted by peptide side chains on most of their muramic acid residues, while the other half is made up of chains in which the muramic acid moieties are unsubstituted.  相似文献   

2.
UDP-N-acetylmuramic acid (UDP-MurNAc) is a precursor for peptidoglycan biosynthesis in bacteria. A major difficulty in the study of this pathway is that UDP-MurNAc is not commercially available. We have developed an enzymatic synthesis scheme for UDP-MurNAc using two easily purified Escherichia coli polyhistidine tagged peptidoglycan biosynthesis enzymes, MurZ and MurB, followed by a single-step purification of UDP-MurNAc by high-performance liquid chromatography. The identity of the UDP-MurNAc synthesized by our method was confirmed by electrospray ionization mass spectrometry. Furthermore, we show that the UDP-MurNAc can support a UDP-MurNAc-L-alanine ligase reaction.  相似文献   

3.
Recent literature on the antibiotics enduracidin, moenomycin, prasinomycin, and 11.837 RP suggested an interaction with murein synthesis. Incubation of sensitive strains from Bacillus cereus and Staphylococcus aureus in a "wall medium" containing labeled l-alanine showed that all four antibiotics inhibited the incorporation of alanine into murein and gave rise to accumulation of radioactive uridine diphosphate-N-acetyl-muramyl (UDP-MurNAc)-pentapeptide. Peptidoglycan was synthesized when the particulate enzyme of B. stearothermophilus was incubated with the murein precursors UDP-N-acetyl-glucosamine (UDP-GlcNAc) and UDP-MurNAc-pentapeptide. The newly formed polymer was less accessible for lysozyme and more strongly bound to the acceptor than the same product from the Escherichia coli particulate enzyme. After incubation in the presence of penicillin, a greater part of the peptidoglycan was lysozyme sensitive and more loosely bound to the acceptor. The antibiotics enduracidin, moenomycin, prasinomycin, and 11.837 RP inhibited peptidoglycan synthesis by the B. stearothermophilus particulate enzyme. The rate of synthesis of GlcNAc-MurNAc(-pentapeptide)-P-P-phospholipid was independent from the addition of these antibiotics, but its utilization was strongly inhibited. With the present results, it is not possible to distinguish the mechanisms of action of enduracidin, moenomycin, prasinomycin, and 11.837 RP from the mechanisms of action of vancomycin and ristocetin.  相似文献   

4.
A microplate, scintillation proximity assay to measure the coupled transglycosylase–transpeptidase activity of the penicillin binding proteins in Escherichia coli membranes was developed. Membranes were incubated with the two peptidoglycan sugar precursors UDP-N-acetyl muramylpentapeptide (UDP-MurNAc(pp)) and UDP-[3H]N-acetylglucosamine in the presence of 40 μM vancomycin to allow in situ accumulation of lipid II. In a second step, vancomycin inhibition was relieved by addition of a tripeptide (Lys-d-ala-d-ala) or UDP-MurNAc(pp), resulting in conversion of lipid II to cross-linked peptidoglycan. Inhibitors of the transglycosylase or transpeptidase were added at step 2. Moenomycin, a transglycosylase inhibitor, had an IC50 of 8 nM. Vancomycin and nisin also inhibited the assay. Surprisingly, the transpeptidase inhibitors penicillin and ampicillin showed no inhibition. In a pathway assay of peptidoglycan synthesis, starting from the UDP linked sugar precursors, inhibition by penicillin was reversed by a ‘neutral’ combination of vancomycin plus tripeptide, suggesting an interaction thus far unreported.  相似文献   

5.
Mode of action of glycine on the biosynthesis of peptidoglycan   总被引:17,自引:6,他引:11       下载免费PDF全文
The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to a disrupture of the normal balance between peptidoglycan synthesis and controlled enzymatic hydrolysis during growth. Second, the modified glycine-containing precursors may be incorporated. Since these are poor substrates in the transpeptidation reaction, a high percentage of muropeptides remains uncross-linked. The second mechanism may be the more significant in most cases.  相似文献   

6.
Purified recombinant MurA (enolpyruvyl-UDP-GlcNAc synthase) overexpressed in Escherichia coli had significant amounts of UDP-MurNAc (UDP-N-acetylmuramic acid) bound after purification. UDP-MurNAc is the product of MurB, the next enzyme in peptidoglycan biosynthesis. About 25% of MurA was complexed with UDP-MurNAc after five steps during purification that should have removed it. UDP-MurNAc isolated from MurA was identified by mass spectrometry, NMR analysis, and comparison with authentic UDP-MurNAc. Subsequent investigation showed that UDP-MurNAc bound to MurA tightly, with K(d,UDP)(-)(MurNAc) = 0.94 +/- 0.04 microM, as determined by fluorescence titrations using ANS (8-anilino-1-naphthalenesulfonate) as an exogenous fluorophore. UDP-MurNAc binding was competitive with ANS and phosphate, the second product of MurA, and it inhibited MurA. The inhibition patterns were somewhat ambiguous, likely being competitive with the substrate PEP (phosphoenolpyruvate) and either competitive or noncompetitive with respect to the substrate UDP-GlcNAc (UDP-N-acetylglucosamine). These results indicate a possible role for UDP-MurNAc in regulating the biosynthesis of nucleotide precursors of peptidoglycan through feedback inhibition. Previous studies indicated that UDP-MurNAc binding to MurA was not tight enough to be physiologically relevant; however, this was likely an artifact of the assay conditions.  相似文献   

7.
The biosynthesis of peptidoglycan and teichoic acid by reverting protoplasts of Bacillus licheniformis 6346 His-, in cubated at 35 C on medium containing 2.5% agar, is detectable after 40 min. The amount of N-acetyl-[1-14C]glucosamine incorporated into peptidoglycan and teichoic acid on continued incubation doubles at the same rate as the incorporation of [3H]tryptophan into protein. At the early stages of reversion the average glycan chain length, measured by the ratio of free reducing groups of muramic acid and glucosamine to total muramic acid present, is very short. As reversion proceeds, the average chain length increases to a value similar to the found in the wall of the parent bacillus. The extent of cross-linkage found in the peptide side chains of the peptidoglycan also increases as reversion proceeds. At the completion of reversion the wall material synthesized has similar characteristics to those of the walls of the parent bacilli, containing peptidoglycan and teichoic and teichuronic acids in about the same proportions. Soluble peptidoglycan can be isolated from the reversion medium, amounting to 30% of the total formed after 3 h of incubation and 8% after 12 h. This amount was reduced by the presence in the medium of the walls of an autolysin-deficient mutant; they were not formed at all by reverting protoplasts of the autolysin-deficient mutant itself. Analysis of the soluble material provided additional evidence for their being autolytic products rather than small unchanged molecules. When protoplasts were incubated on medium containing only 0.8% agar, 53 to 67% of the peptidoglycan formed after 3 h of incubation was soluble, and 21% after 12 h. Fibers that appeared to be sheared from the protoplasts at intermediate stages of reversion on medium containing 2.5% agar were similar in composition to the bacillary walls.  相似文献   

8.
Biosynthesis of streptococcal cell walls: N-acetyl-D-muramic acid   总被引:1,自引:1,他引:0       下载免费PDF全文
Glucose-1-(14)C and acetylglucosamine-1-(14)C were added singly and together with equal amounts of the unlabeled reciprocal to Brain Heart Infusion and used for the culture of Streptococcus pyogenes. The labeling pattern of the rhamnose, glucosamine, and muramic acid in the cell wall supported an intermediary role for acetylglucosamine in providing the C1-C6 moiety of muramic acid. Although radioactivity in the C2-C9 portion of muramic acid suggested that some of the lactyl group (C7-C9) came from glycolytic products, there was also considerable contribution to it from noncarbohydrate sources. Using cell-free extracts, we were unable to demonstrate biosynthesis of acetylmuramic acid, either free or nucleotide-bound, while glycolysis was occurring. The formation of uridine diphosphoacetylmuramic acid has been reported by others who used uridine diphospho-N-acetyl-d-glucosamine, phosphoenolpyruvate, reduced nicotinamide adenine dinucleotide, and reduced nicotinamide adenine dinucleotide phosphate. However, we did not detect the formation of this compound.  相似文献   

9.
The peptidoglycan structure of Mycobacterium spp. has been investigated primarily with the readily cultivable Mycobacterium smegmatis and Mycobacterium tuberculosis and has been shown to contain unusual features, including the occurrence of N-glycolylated, in addition to N-acetylated, muramic acid residues and direct cross-linkage between meso-diaminopimelic acid residues. Based on results from earlier studies, peptidoglycan from in vivo-derived noncultivable Mycobacterium leprae was assumed to possess the basic structural features of peptidoglycans from other mycobacteria, other than the reported replacement of l-alanine by glycine in the peptide side chains. In the present study, we have analyzed the structure of M. leprae peptidoglycan in detail by combined liquid chromatography and mass spectrometry. In contrast to earlier reports, and to the peptidoglycans in M. tuberculosis and M. smegmatis, the muramic acid residues of M. leprae peptidoglycan are exclusively N acetylated. The un-cross-linked peptide side chains of M. leprae consist of tetra- and tripeptides, some of which contain additional glycine residues. Based on these findings and genome comparisons, it can be concluded that the massive genome decay in M. leprae does not markedly affect the peptidoglycan biosynthesis pathway, with the exception of the nonfunctional namH gene responsible for N-glycolylmuramic acid biosynthesis.  相似文献   

10.
The structure of the endospore cell wall peptidoglycan of Bacillus subtilis has been examined. Spore peptidoglycan was produced by the development of a method based on chemical permeabilization of the spore coats and enzymatic hydrolysis of the peptidoglycan. The resulting muropeptides which were >97% pure were analyzed by reverse-phase high-performance liquid chromatography, amino acid analysis, and mass spectrometry. This revealed that 49% of the muramic acid residues in the glycan backbone were present in the delta-lactam form which occurred predominantly every second muramic acid. The glycosidic bonds adjacent to the muramic acid delta-lactam residues were resistant to the action of muramidases. Of the muramic acid residues, 25.7 and 23.3% were substituted with a tetrapeptide and a single L-alanine, respectively. Only 2% of the muramic acids had tripeptide side chains and may constitute the primordial cell wall, the remainder of the peptidoglycan being spore cortex. The spore peptidoglycan is very loosely cross-linked at only 2.9% of the muramic acid residues, a figure approximately 11-fold less than that of the vegetative cell wall. The peptidoglycan from strain AA110 (dacB) had fivefold-greater cross-linking (14.4%) than the wild type and an altered ratio of muramic acid substituents having 37.0, 46.3, and 12.3% delta-lactam, tetrapeptide, and single L-alanine, respectively. This suggests a role for the DacB protein (penicillin-binding protein 5*) in cortex biosynthesis. The sporulation-specific putative peptidoglycan hydrolase CwlD plays a pivotal role in the establishment of the mature spore cortex structure since strain AA107 (cwlD) has spore peptidoglycan which is completely devoid of muramic acid delta-lactam residues. Despite this drastic change in peptidoglycan structure, the spores are still stable but are unable to germinate. The role of delta-lactam and other spore peptidoglycan structural features in the maintenance of dormancy, heat resistance, and germination is discussed.  相似文献   

11.
The hypothesis that the biosynthesis of the glycolyl group of muramic acid in the peptidoglycan of Myobacterium phlei is catalyzed by an N-acetyl hydroxylase is strongly supported by the experiments reported in this paper. 18O is incorporated into the N-substituent of muramic acid isolated from the peptidoglycan of M. phlei grown under pure oxygen enriched with the 18O isotope.  相似文献   

12.
The peptidoglycan of Mycobacterium spp. reportedly has some unique features, including the occurrence of N-glycolylmuramic rather than N-acetylmuramic acid. However, very little is known of the actual biosynthesis of mycobacterial peptidoglycan, including the extent and origin of N glycolylation. In the present work, we have isolated and analyzed muramic acid residues located in peptidoglycan and UDP-linked precursors of peptidoglycan from Mycobacterium tuberculosis and Mycobacterium smegmatis. The muramic acid residues isolated from the mature peptidoglycan of both species were shown to be a mixture of the N-acetyl and N-glycolyl derivatives, not solely the N-glycolylated product as generally reported. The isolated UDP-linked N-acylmuramyl-pentapeptide precursor molecules also contain a mixture of N-acetyl and N-glycolyl muramyl residues in apparent contrast to previous observations in which the precursors isolated after treatment with d-cycloserine consisted entirely of N-glycolyl muropeptides. However, nucleotide-linked peptidoglycan precursors isolated from M. tuberculosis treated with d-cycloserine contained only N-glycolylmuramyl-tripeptide precursors, whereas those from similarly treated M. smegmatis consisted of a mixture of N-glycolylated and N-acetylated residues. The full pentapeptide intermediate, isolated following vancomycin treatment of M. smegmatis, consisted of the N-glycolyl derivative only, whereas the corresponding M. tuberculosis intermediate was a mixture of both the N-glycolyl and N-acetyl products. Thus, treatment with vancomycin and d-cylcoserine not only caused an accumulation of nucleotide-linked intermediate compounds but also altered their glycolylation status, possibly by altering the normal equilibrium maintained by de novo biosynthesis and peptidoglycan recycling.  相似文献   

13.
Peptidoglycan of free-living anaerobic spirochetes   总被引:9,自引:2,他引:7  
Electron microscope examination of negatively stained or thin-sectioned cells of Spirochaeta stenostrepta treated with penicillin or lysozyme showed that the peptidoglycan was present as a thin, electron-dense layer adjacent and external to the cytoplasmic membrane. The peptidoglycan was isolated from cells of S. stenostrepta and Spirochaeta litoralis by a procedure including treatments with sodium lauryl sulfate and Pronase. Hydrolysates of the isolated S. stenostrepta and S. litoralis peptidoglycans contained glucosamine, muramic acid, glutamic acid, l-ornithine, and alanine in molar ratios of 0.90:0.85:1.00:1.00:1.40 and of 0.63:0.63:0.99:1.00:1.41, respectively. Determination of N-terminal residues suggested that nearly 50% of the ornithine in S. stenostrepta and S. litoralis peptidoglycans was involved in peptide cross-linkage. The peptidoglycan layer of S. stenostrepta was sensitive to lysozyme and myxobacter AL-1 protease.  相似文献   

14.
Cultures of a stable L-phase variant of Streptococcus faecium F24 produced and retained peptidoglycan precursors intracellularly over the entire growth cycle in a chemically defined medium. The identity of the most abundant precursor, UDP N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine (UDP-MurNAc-pentapeptide), was confirmed by demonstrating in vitro the presence of enzymes required for the cytoplasmic stage of peptidoglycan biosynthesis. The initial membrane-bound reaction in peptidoglycan biosynthesis involving phospho-MurNAc-pentapeptide translocase and undecaprenyl-phosphate membrane carrier was catalyzed by protoplast membrane preparations but not by L-phase membrane preparations. However, both protoplast and L-phase membranes incorporated radioactivity from dTDP-L-[14C]rhamnose, the presumed precursor to a non-peptidoglycan cell surface component, into high-molecular-weight material. dTDP-L-rhamnose did not accumulate in growing cultures but was synthesized from D-glucose-1-phosphate and dTTP by cell-free extracts of the streptococcus and L-phase variant. Neither rhamnose- nor muramic acid-containing compounds were detected in culture fluids. It is suggested that continued inhibition of cell wall biosynthesis in this stable L-phase variant is the result of a defect expressed at the membrane stage of peptidoglycan biosynthesis specifically involving the translocation step.  相似文献   

15.
By addition of 1-(14)C-sodium acedate to the growth medium of Nocardia asteroides, it can be shown that the lipid content increases during the exponential phase, but does not vary during the stationary phase of the growth. Nocardic acid biosynthesis from the medium molecular weight fatty acids occurs chiefly during te stationary phase. As these compounds are localised in the cell walls, it becomes evident that the lipid envelope of the walls is still increasing when the cell growth and division have stopped.  相似文献   

16.
The N-acetylmuramic acid α-1-phosphate (MurNAc-α1-P) uridylyltransferase MurU catalyzes the synthesis of uridine diphosphate (UDP)-MurNAc, a crucial precursor of the bacterial peptidoglycan cell wall. MurU is part of a recently identified cell wall recycling pathway in Gram-negative bacteria that bypasses the general de novo biosynthesis of UDP-MurNAc and contributes to high intrinsic resistance to the antibiotic fosfomycin, which targets UDP-MurNAc de novo biosynthesis. To provide insights into substrate binding and specificity, we solved crystal structures of MurU of Pseudomonas putida in native and ligand-bound states at high resolution. With the help of these structures, critical enzyme-substrate interactions were identified that enable tight binding of MurNAc-α1-P to the active site of MurU. The MurU structures define a “minimal domain” required for general nucleotidyltransferase activity. They furthermore provide a structural basis for the chemical design of inhibitors of MurU that could serve as novel drugs in combination therapy against multidrug-resistant Gram-negative pathogens.  相似文献   

17.
Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.  相似文献   

18.
The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings.  相似文献   

19.
Culture filtrates of virulent Nocardia asteroides GUH-2 after growth in acetate minimal medium displayed an absorbance maximum at 320 nm. After isolation by polyamide extraction and anion chromatography, a UV-active compound with this absorbance was shown to be 2,3-dihydroxybenzoic acid (DHB) by nuclear magnetic resonance, gas chromatographic, and mass spectrometric techniques. DHB production under several culture conditions was quantified by a standard high-pressure liquid chromatography assay. Under iron deficiency conditions, N. asteroides GUH-2 excreted up to 11 mg of DHB per liter into the culture medium. No DHB was detected when N. asteroides GUH-2 was grown in an iron-rich medium. With the less virulent strain N. asteroides 10905, DHB was not found under any condition tested.  相似文献   

20.
Bdellovibrio peptidoglycan is of typical gram-negative composition. The molar ratios of alanine:glutamic acid:diaminopimelic acid:muramic acid:glucosamine were about 2:1:1:1:1. Nascent, nongrowing Bdellovibrio bacteriovorus 109J were converted from highly motile vibrios to highly motile spheres when shaken in dilute buffer plus penicillin, cephalothin, bacitracin, or D-cycloserine. The spherical forms contained essentially no sedimentable peptidoglycan; i.e., they were spheroplasts. Spheroplasts induced by penicillin, D-cycloserine, and lysozyme were stable in dilute buffer and did not lyse when subjected to osmotic shock. Normal Bdellovibrio suspended in buffer turned over their peptidoglycan at a rate of approximately 30% h during the initial 120 min of starvation. Chloramphenicol and sodium azide strongly inhibited Bdellovibrio peptidoglycan turnover and the induction of spheroplasts by penicillin. The data indicate that nongrowing B. bacteriovorus are sensitive to penicillin and other antibiotics affecting cell walls because of their high rate of peptidoglycan turnover. It is also concluded that an intact peptidoglycan layer is required for maintaining cell shape, but is not required for osmotic stability of B. bacteriovorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号