首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chromosomal rearrangements, including DNA deletions are involved in carcinogenesis. The deletion (DEL) assay scoring for DNA deletions in the yeast Saccharomyces cerevisiae is able to detect a wide range of carcinogens. Among approximately 60 compounds of known carcinogenic activity, the DEL assay detected 86% correctly whereas the Ames Salmonella assay detected only 30% correctly [R.J. Brennan, R.H. Schiestl, Detecting carcinogens with the yeast DEL assay, Methods Mol. Biol. 262 (2004) 111-124]. Since the DEL assay is highly inducible by DNA double strand breaks, this study examined the utility of the DEL assay for detecting clastogens. Ten model compounds, with varied mechanisms of genotoxicity, were examined for their effect on the frequency of DNA deletions with the DEL assay. The compounds tested were: actinomycin D, camptothecin, methotrexate and 5-fluorodeoxyuridine, which are anticancer agents, noscapine and furosemide are therapeutics, acridine, methyl acrylate and resorcinol are industrial chemicals and diazinon is an insecticide. The in vitro micronucleus assay (IVMN) in CHO cells, a commonly used tool for detection of clastogens, was performed on the same compounds and the results of the two assays were compared. The results of our study show that there is 70% concordance in the presence of metabolic activation (rat liver S9) and 80% concordance in the absence of metabolic activation between the DEL assay and the standard in vitro micronucleus assay. The lack of cytotoxicity observed for four of the ten compounds examined indicates limited diffusion of lipophilic compounds across the yeast cell wall. Thus, the development of a more permeable yeast tester strain is expected to greatly improve concordance of the DEL assay with the IVMN assay. The yeast DEL assay is inexpensive, amenable to automation and requires less expertise to perform than the IVMN. Thus, it has a strong potential as a robust, fast and economical screen for detecting clastogens in vitro.  相似文献   

3.
The DEL assay in yeast detects DNA deletions that are inducible by many carcinogens. Here we use the colorimetric agent MTS to adapt the yeast DEL assay for microwell plate measurement of ionizing radiation-induced cell killing and DNA deletions. Using the microwell-based DEL assay, cell killing and genotoxic DNA deletions both increased with radiation dose between 0 and 2000 Gy. We used the microwell-based DEL assay to assess the effectiveness of varying concentrations of five different radioprotectors, N-acetyl-l-cysteine, l-ascorbic acid, DMSO, Tempol and Amifostine, and one radiosensitizer, 5-bromo-2-deoxyuridine. The microwell format of the DEL assay was able to successfully detect protection against and sensitization to both radiation-induced cytotoxicity and genotoxicity. Such radioprotection and sensitization detected by the microwell-based DEL assay was validated and compared with similar measurements made using the traditional agar-based assay format. The yeast DEL assay in microwell format is an effective tool for rapidly detecting chemical protectors and sensitizers to ionizing radiation and is automatable for chemical high-throughput screening purposes.  相似文献   

4.
Drug synthesis and/or formulation can generate genotoxic impurities. For instance, strong acid/alcohol interactions during the process of drug salt formation produce alkylating agents such as alkyl halides and alkyl esters of alkyl sulfonic acids. The genotoxicity of a few classic alkylating agents such as methyl and ethyl methanesulfonate have been previously well characterized, whereas the majority of compounds from this class have only been tested in the Salmonella reversion assay. Therefore, the goal of this study was to investigate clastogenicity and DEL recombination profiles of 22 halogenated alkanes and alkylesters of sulfuric and alkane-, aryl-sulfonic acids using a battery of cellular and molecular assays. The in-vitro micronucleus assay in CHO cells was used to measure clastogenicity and the deletion recombination (DEL) assay in S. cerevisiae provided a measure of DNA deletions. We also examined the compounds' reactivity towards 4-(p-nitrobenzyl)pyridine (NBP), a surrogate molecule for biological ring nitrogens. Methylating agents were most potent in all three assays and the alkyl chlorides evaluated in our study were negative in all three assays. Also, a strong correlation was found between the MN, DEL and NBP assays. In summary, this study contributes to a better understanding of the genotoxic properties of common alkyl halides and alkyl esters with alkylating activity and might provide guidance for managing risk of genotoxic process-related impurities of drug substances and products.  相似文献   

5.
In vitro alkaline elution is a sensitive and specific short term assay which measures DNA strand breakage in a mammalian test system (primary rat hepatocytes). This lab has previously demonstrated the performance of the assay with known genotoxic and non-genotoxic compounds. The methodology employed has relatively low sample throughput and is labor-intensive, requiring a great deal of manual processing of samples in a format that is not amenable to automation. Here, we present an automated version of the assay. This high-throughput alkaline elution assay (HT-AE) was made possible through 3 key developments: (1) DNA quantitation using PicoGreen and OliGreen fluorescent DNA binding dyes; (2) design and implementation of a custom automation system; and (3) reducing the assay to a 96-well plate format. The assay can now be run with 5-50mg of test compound. HT-AE was validated in a similar manner as the original assay, including assessment of non-genotoxic and non-carcinogenic compounds and evaluation of cytotoxicity to avoid confounding effects of toxicity-associated DNA degradation. The validation test results from compounds of known genotoxic potential were used to set appropriate criteria to classify alkaline elution results for genotoxicity.  相似文献   

6.
Aniline-based aromatic amine carcinogens are poorly detected in short-term mutagenicity assays such as the Salmonella reverse mutation (Ames) assay. More information on the mechanism of toxicity of such Salmonella-negative carcinogens is needed. Aniline and o-toluidine are negative in the Ames assay, but induce deletions (DEL) due to intrachromosomal recombination in Saccharomyces cerevisiae with an apparent threshold. We show here that the DEL assay also detects the genotoxic activity of another aromatic amine carcinogen, o-anisidine, which is also negative in the Salmonella assay. We also show that the DEL assay distinguishes between o-anisidine and its non-carcinogenic structural analog 2, 4-dimethoxyaniline. We have investigated whether the ability of the DEL assay to detect the carcinogens and to distinguish between the carcinogen/non-carcinogen pair is linked to rises in intracellular free radical species following exposure to the carcinogens. Toxicity induced by all three compounds was reduced in the presence of the free radical scavenger and antioxidant N-acetyl cysteine, recombination induced by o-anisidine and o-toluidine was also reduced by N-acetyl cysteine. All three compounds induced oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate. Superoxide dismutase-deficient strains, however, were hypersensitive to cytotoxicity induced by o-toluidine and o-anisidine but not by the non-carcinogen 2,4-dimethoxyaniline, indicating a different potential for generating superoxide radical between the carcinogens and the non-carcinogen analog. The results indicate that the yeast DEL assay is a useful tool for investigating the genotoxic activity of aromatic amine carcinogens.  相似文献   

7.
Genome rearrangements, such as DNA deletions, translocations and duplications, are associated with cancer in rodents and humans, and clastogens are capable of inducing such genomic rearrangements. The clastogen benzene and several of its toxic metabolites have been shown to cause cancer in animals. Benzene is associated with leukemia and other blood related disorders in humans. Benzene and metabolites tested negative in short-term bacterial mutation assays such as the Salmonella Mutagenicity Test and the Escherichia coli Tryptophan Reversion Assay. These assays, while reliable for the detection of point-mutagenic carcinogens, are incapable of detecting DNA strand break inducing xenobiotics. The yeast DEL assay is based on intrachromosomal recombination events resulting in deletions and is very sensitive in detecting DNA strand breaks. In previous results the DEL assay detected 17 Salmonella positive as well as 25 Salmonella negative carcinogens [Bishop, Schiestl, Hum. Mol. Genet. 9 (2000) 2427-2434]. The carcinogen benzene and its metabolites including phenol, catechol, p-benzoquinone and hydroquinone induced DEL recombination. The benzene metabolite 1,2,4-benzenetriol was negative. Interestingly, p-benzoquinone induced DEL recombination at a dose 300-fold lower than any of the other metabolites, suggesting that it might be responsible for much of benzene's genotoxicity. In addition, an excision repair deficient strain was used, but no difference was detected compared to the wildtype, indicating that DNA adducts subject to excision repair were not formed by benzene or its metabolites.  相似文献   

8.
The carcinogenicity of aniline-based aromatic amines is poorly reflected by their activity in short-term mutagenicity assays such as the Salmonella typhimurium reverse mutation (Ames) assay. More information about the mechanism of action of such carcinogens is needed. Here we report the effects on DEL recombination in Saccharomyces cerevisiae of the carcinogen 2,4-diaminotoluene and its structural isomer 2,6-diaminotoluene, which is reported to be non-carcinogenic. Both compounds are detected as equally mutagenic in the Salmonella assay. In the absence of any external metabolizing system both compounds were recombinagenic in the DEL assay, with the carcinogen being a more potent inducer of deletions than the non-carcinogen. In the presence of Aroclor-induced rat liver S9, however, the carcinogen 2,4-diaminotoluene became a 2-fold more potent inducer of deletions, and the non-carcinogen 2,6-diaminotoluene was rendered less toxic and no induced recombination was observed. 2,4-Diaminotoluene is distinguished from its non-carcinogen analog in the DEL assay, therefore, on the basis of a preferential activation of the carcinogen in the presence of a rat liver microsomal metabolizing system. Free radical species are produced by several carcinogens and have been implicated in carcinogenesis. We further investigated whether exposure of yeast to either 2,4-diaminotoluene or 2,6-diaminotoluene resulted in a rise in intracellular free radical species. The effects of the free radical scavenger N-acetylcysteine on toxicity and recombination induced by the two compounds and intracellular oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate were studied. Both 2,4- and 2,6-diaminotoluene produced free radical species in yeast, indicating that the reason for the differential activity of the compounds for induced deletions is not reflected in any difference in the production of free radical species.  相似文献   

9.
This study determines the effects of a water disinfection by-product, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (also known as mutagen X or MX) and chlorinated tap water on genomic instability in the yeast Saccharomyces cerevisiae. Tap water samples collected from Cherepovets (Russia) and Boston (MA, USA), were extracted using XAD absorption and ethyl acetate elution. MX and these water extracts were then tested for their ability to induce intrachromosomal recombination (deletions or DEL events), interchromosomal recombination (ICR) and aneuploidy (ANEU) using the yeast DEL assay. MX strongly induced DEL, ICR and ANEU events with a positive dose response and no threshold. Cherepovets tap water induced DEL and ICR events while evidence of ANEU induction was weak. The DEL induction potencies were stronger at higher concentrations. The estimated contribution of MX to DEL induction varied from over 50% at low concentrations (which is comparable to a typical contribution of MX to Ames mutagenicity of tap water) to between 2 and 10% at highest concentrations. For Boston tap water, there was only weak evidence of DEL induction and no evidence of ICR and ANEU induction. This is consistent with the results of other studies, which reported much higher concentrations of MX and stronger Ames mutagenicity in Cherepovets tap water than in Boston tap water.  相似文献   

10.
The yeast DEL assay measures the frequency of intrachromosomal recombination between two partially-deleted his3 alleles on chromosome XV. The his3Delta alleles share approximately 400bp of overlapping homology, and are separated by an intervening LEU2 sequence. Homologous recombination between the his3Delta alleles results in deletion of the intervening LEU2 sequence (DEL), and reversion to histidine prototrophy. In this study we have attempted to further extend the use of the yeast DEL assay to measure the frequency of chromosome XV gain events. Reversion to His(+)Leu(+) in the haploid yeast DEL tester strain RSY6 occurs upon non-disjunction of chromosome XV sister chromatids, coupled with a subsequent DEL event. Here we have tested the ability of the yeast DEL assay to accurately predict the aneugenic potential of the diversely-acting, known or suspected aneugens actinomycin D, benomyl, chloral hydrate, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and methotrexate. Actinomycin D and benomyl strongly induced aneuploidy. EMS and methotrexate modestly induced aneuploidy, while chloral hydrate and MMS failed to illicit any significant induction. In addition, by FACS-analysis of DNA content it was shown that the majority of both spontaneous- and chemically-induced His(+)Leu(+) revertants were heterodiploid. Thus, our results indicate endoreduplication of almost entire chromosome sets as a major mechanism of aneuploidy induction in haploid Saccharomyces cerevisiae.  相似文献   

11.
We report the development of a simple, cost-effective assay for detecting compounds that have the ability to interact with and modify DNA. Potential uses for the assay lie in the areas of early genotoxicity testing of drug candidates, anticancer and antibiotic drug discovery, environmental monitoring and testing in the food, beverage and cosmetics industries. At present the assay has been used to assess direct-acting compounds only and it is yet to be established whether the assay is compatible with bio-activation. The methodology is based on the oxidative reaction of potassium permanganate with pyrimidine bases, which have become perturbed and more reactive by the agent under test. Results are recorded by use of UV/vis spectroscopy. The adaptation to a multi-well plate format provides the capacity for high throughput utilizing small amounts of compounds. Over 100 compounds, comprising different classes of DNA-binding chemicals as well as non-binding controls, have been put through the assay and the results compared with existing genotoxicity testing data from other methods. The assay has shown to be predictive of the results of other genotoxicity testing methods. We have found that the method is overall predictive of 71% of Ames bacterial reverse-mutation test results (where data are given) encompassing both negative and positive results.  相似文献   

12.
The potential genotoxicity of drug candidates is a serious concern during drug development. Therefore, it is important to assess the potential genotoxicity and mutagenicity of a compound early in the discovery phase of drug development. AMES Salmonella assay is the most widely used assay for the assessment of mutagenicity and genotoxicity. However, the AMES assay is not readily adaptable to highthroughput screening and several strains of Salmonella must be employed to ensure that different types of DNA damage can be studied. Therefore, an additional robust highthroughput genotoxicity screen would be of significant value in the early detection and elimination of genotoxicity. The complexity of DNA damage requires numerous cellular pathways, thus using single model organism to predict genotoxicity in early stage is challenging. Another critical component of such screens is that they incorporate the capability of metabolic activation to ensure that no genotoxic metabolites are generated. We have developed a novel highthroughput reporter assay for DNA repair that detects genotoxicity, and which incorporates metabolic activation. The assay has a low compound requirement as compared to Ames, and relies upon two different reporter genes cotransfected into a yeast strain. The gene encoding Renilla luciferase is fused to the constitutive 3-phosphoglycerate kinase (PGK1) promoter and integrated into the yeast genome to provide a control for cell numbers. The firefly luciferase gene is fused to the RAD51 (bacterial RecA homolog) promoter and used to report an increase in DNA repair activity. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. The result is expressed as the ratio of the two luciferase activities; changes from the base level (control) are interpreted as induction of the RAD51 promoter and evidence of DNA repair activity in eukaryote cells due to DNA damage. The yeast dual luciferase reporter has been characterized with and without S-9 activation using positive and negative control agents. This assay is efficient, requires little time and low amounts of compound. The assay is compatible with metabolic activation, adaptable to a highthroughput platform, and yields data that accurately and reproducibly detects DNA damage. Whereas the normal yeast cell wall, plasma membrane composition and the presence of active transporters can prevent the entry or persistence of some compounds internally in yeast cells, our assay did show concordance with regulatory mutagenicity assays, many of which require metabolic activation and are poorly detected by bacterial mutagenicity assays. Although there were false negative results, in our hands this assay performs as well as or better than other commercially available genetox assays. Furthermore, the RAD51 gene is strongly inducible by homologous intrachromosomal recombination; thus this assay may provide a means to detect clastogens. The RAD51 promoter fused dual luciferase assay represents a valuable addition to the armamentarium for the early detection of genotoxic compounds.  相似文献   

13.
We have identified a 25-kD cytosolic yeast protein that mediates a late, prefusion step in transport of proteins between compartments of the Golgi apparatus. Activity was followed using the previously described cell free assay for protein transport between Golgi compartments as modified to detect late acting cytosolic factors (Wattenberg, B. W., and J. E. Rothman. 1986. J. Biol. Chem. 263:2208-2213). In the reaction mediated by this protein, transport vesicles that have become attached to the target membrane during a preincubation are processed in preparation for fusion. The ultimate fusion event does not require the addition of cytosolic proteins (Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Cell. 39:525-536). Although isolated from yeast, this protein has activity when assayed with mammalian membranes. This protein has been enriched over 150-fold from yeast cytosol, albeit not to complete homogeneity. The identity of a 25-kD polypeptide as the active component was confirmed by raising monoclonal antibodies to it. These antibodies were found to specifically inhibit transport activity. Because this is a protein operating in prefusion, it has been abbreviated POP.  相似文献   

14.
Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated. We demonstrate that quantification by microarray-based hybridization, Luminex bead-based methods, and qPCR are each compatible with our platform, further expanding the breadth of proteomic applications for a wide user community.  相似文献   

15.
In the degradation of chlorophyll, chlorophyllase catalyzes the initial hydrolysis of the phytol moiety from the pigment. Since chlorophyll degradation is a defining feature of plant senescence, compounds inhibiting chlorophyllase activity may delay senescence, thereby improving shelf life and appearance of plant products. Here we describe the development of a 96-well plate-based purification and assay system for measuring chlorophyllase activity. Integrated lysis and immobilized metal affinity chromatography plates were used for purifying recombinant hexahistidine-tagged Triticum aestivum (wheat) chlorophyllase from Escherichia coli. Chlorophyllase assays using chlorophyll as a substrate showed that the immobilized fusion protein displayed kinetic parameters similar to those of recombinant enzyme purified by affinity chromatography; however, the need to extract reaction products from a multiwell plate limits the value of this assay for high-throughput screening applications. Replacing chlorophyll with p-nitrophenyl-ester substrates eliminates the extraction step and allows for continuous measurement of chlorophyllase activity in a multiwell plate format. Determination of steady state kinetic constants, pH rate profile, the inhibitory effects of metal ions and esterase inhibitors, and the effect of functional group-modifying reagents validated the utility of the plate-based system. The combined purification and assay system provides a convenient and rapid method for the assessment of chlorophyllase activity.  相似文献   

16.
Thirty compounds tested in the Drosophila wing spot test   总被引:2,自引:0,他引:2  
The Drosophila wing somatic mutation and recombination test (SMART) was evaluated for its suitability in genotoxicity screening by testing 30 chemicals. Of the 2 crosses used, the mwh-flr3 cross turned out to be more convenient than the previously used mwh-flr cross. Based on the experience gained with both acute exposures and chronic exposures of different duration, we suggest that the optimal strategy in genotoxicity screening is to start with chronic exposure of 3-day-old larvae for 48 h (that is, until pupation). Only for unstable compounds and very volatile compounds and gases are acute treatments, including inhalation, recommended. In general, a qualitative evaluation of the genotoxicity of a compound in the wing assay is possible with as few as 1-2 different exposure concentrations. A more quantitative evaluation of genotoxicity, based upon dose-response data, can often be achieved with as few as 3-4 concentrations. The results reported here were obtained in 2 different laboratories, demonstrating that the wing spot test is easily transferable to other laboratories. The experience gained indicates that the assay has now been developed to an extent that a coordinated international comparative validation study is desirable.  相似文献   

17.
Tyrosyl-DNA phosphodiesterase (TDP) cleaves the phosphodiester bond linking the active site tyrosine residue of topoisomerase I with the 3' terminus of DNA in topoisomerase I-DNA complexes which accumulate during treatment of cancer with camptothecin. In yeast, TDP mutation confers a 1000-fold hypersensitivity to camptothecin in the presence of an additional mutation of RAD9 gene [Pouliot, J.J., Yao, K.C., Robertson, C.A. & Nash, H.A. (1999) Science 286, 552-555]. Based on the recently solved crystal structure, human TDP belongs to a distinct class within the phospholipase D superfamily in spite of very low sequence homology [Interthal, H., Pouliot, J.J. & Champoux, J.J. (2001) Proc. Natl Acad. Sci. USA 98, 12009-12014, and Davies, D.R., Interthal, H., Champoux, J.J. & Hol, W.G.J. (2002) Structure 10, 237-248]. To understand the enzymatic mechanism of this novel enzyme, and to facilitate inhibitor screening of human TDP, we have expressed and purified recombinant human TDP variants carrying deletions of 1-39 or 1-174 amino acids. Furthermore, a continuous colorimetric assay in a 96-well format was also developed using p-nitrophenyl-thymidine-3'-phosphate as substrate. This assay system is able to detect enzymatic activity at enzyme concentrations as low as 15 nm. Purified recombinant human TDPNDelta39 cleaved p-nitrophenyl-thymidine-3'-phosphate with Km and kcat values of 211.14 +/- 23.83 micro m and 8.82 +/- 0.57 per min in the presence of Mn2+.  相似文献   

18.
The GreenScreen GADD45alpha indicator assay has been assessed for its concordance with in vitro genotoxicity and rodent carcinogenicity bioassay data. To test robustness, sensitivity, and specificity of the assay, 91 compounds with known genotoxicity results were screened in a blinded manner. Fifty seven of the compounds were classified as in vitro genotoxic whereas 34 were non-genotoxic. Out of the 91 compounds, 50 had been tested in 2-year carcinogenicity assays, with 33 identified to be rodent carcinogens and 17 non-carcinogens. Gadd45alpha assay sensitivity and specificity for genotoxicity was 30% and 97%, respectively (17/57 and 33/34), whereas its sensitivity and specificity for rodent carcinogenicity was 30% and 88%, respectively (10/33 and 15/17). Gadd45alpha assay genotoxicity results from this validation study exhibited a high concordance with previously published results as well as for compound test results generated at two different sites (91%, 19/21), indicating that the assay is both robust and reproducible. In conclusion, results from this blinded and independent validation study indicate that the GreenScreen GADD45 indicator assay is reproducible and reliable with low sensitivity and high specificity for identifying genotoxic and carcinogenic compounds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号