共查询到20条相似文献,搜索用时 9 毫秒
1.
Shusheng Wang Stephanie A. Ketcham Arne Sch?n Benjamin Goodman Yueju Wang John Yates III Ernesto Freire Trina A. Schroer Yixian Zheng 《Molecular biology of the cell》2013,24(22):3522-3533
Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly. 相似文献
2.
Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase 总被引:4,自引:1,他引:4 下载免费PDF全文
Liang Y Yu W Li Y Yu L Zhang Q Wang F Yang Z Du J Huang Q Yao X Zhu X 《Molecular biology of the cell》2007,18(7):2656-2666
The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly ( approximately 78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor. 相似文献
3.
Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. 总被引:22,自引:0,他引:22
B J Howell B F McEwen J C Canman D B Hoffman E M Farrar C L Rieder E D Salmon 《The Journal of cell biology》2001,155(7):1159-1172
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 "dynamitin" protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint. 相似文献
4.
Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein 总被引:4,自引:3,他引:1
《The Journal of cell biology》1985,101(5):1858-1870
We have studied cytoskeletal architectures of isolated mitotic apparatus from sea urchin eggs using quick-freeze, deep-etch electron microscopy. This method revealed the existence of an extensive three- dimensional network of straight and branching crossbridges between spindle microtubules. The surface of the spindle microtubules was almost entirely covered with hexagonally packed, small, round button- like structures which were very uniform in shape and size (approximately 8 nm in diameter), and these microtubule buttons frequently provided bases for crossbridges between adjacent microtubules. These structures were removed from the surface of microtubules by high salt (0.6 M NaCl) extraction. Microtubule- associated proteins (MAPs) and microtubules isolated from mitotic spindles which were mainly composed of a large amount of 75-kD protein and some high molecular mass (250 kD, 245 kD) proteins were polymerized in vitro and examined by quick-freeze, deep-etch electron microscopy. The surfaces of microtubules were entirely covered with the same hexagonally packed round buttons, the arrangement of which is intimately related to that of tubulin dimers. Short crossbridges and some longer crossbridges were also observed. High salt treatment (0.6 M NaCl) extracted both 75-kD protein and high molecular weight proteins and removed microtubule buttons and most of crossbridges from the surface of microtubules. Considering the relatively high amount of 75- kD protein among MAPs isolated from mitotic spindles, it is concluded that these microtubule buttons probably consist of 75-kD MAP and that some of the crossbridges in vivo could belong to MAPs. Another kind of granule, larger in size (11-26 nm in diameter), was also on occasion associated with the surface of microtubules of mitotic spindles. A fine sidearm sometimes connected the larger granule to adjacent microtubules. Localization of cytoplasmic dynein ATPase in the mitotic spindle was investigated by electron microscopic immunocytochemistry with a monoclonal antibody (D57) against sea urchin sperm flagellar 21S dynein and colloidal gold-labeled second antibody. Immunogold particles were closely associated with spindle microtubules. 76% of these were within 50 nm and 55% were within 20 nm from the surface of the microtubules. These gold particles were sporadically found on both polar and kinetochore microtubules of half-spindles at both metaphase and anaphase. They localized also on the microtubules between sister chromatids in late anaphase. These data indicate that cytoplasmic dynein is attached to the microtubules in sea urchin mitotic spindles.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
5.
Vesicle transport along microtubular ribbons and isolation of cytoplasmic dynein from Paramecium 总被引:2,自引:0,他引:2 下载免费PDF全文
《The Journal of cell biology》1990,111(6):2553-2562
Cytoplasmic microtubule-based motility in Paramecium was investigated using video-enhanced contrast microscopy, the quick-freeze, deep-etch technique, and biochemical isolations. Three distinct vesicle populations were found to be transported unidirectionally along the cytopharyngeal microtubular ribbons. This minus-end-directed movement exhibited unique in vivo features in that the vesicle transport was nonsaltatory, rapid, and predominantly along one side of the microtubular ribbons. To identify candidate motor proteins which may participate in vesicle transport, we prepared cytosolic extracts of Paramecium and used bovine brain microtubules as an affinity matrix. These preparations were found to contain a microtubule-stimulated ATPase which supported microtubule gliding in vitro. This protein was verified as a cytoplasmic dynein based upon its relative molecular mass, sedimentation coefficient of 16S, susceptibility to vanadate photocleavage, elevated CTPase/ATPase ratio, and its typical two-headed dynein morphology. This dynein was directly compared with the axonemal dyneins from Paramecium and found to differ by five criteria: morphology, sedimentation coefficient, CTPase/ATPase ratio, vanadate cleavage patterns, and polypeptide composition. The cytoplasmic dynein is therefore not an axonemal dynein precursor, but rather it represents a candidate for supporting the microtubule-based vesicle transport which proceeds along the microtubular ribbons. 相似文献
6.
Nudel and Lis1 appear to regulate cytoplasmic dynein in neuronal migration and mitosis through direct interactions. However, whether or not they regulate other functions of dynein remains elusive. Herein, overexpression of a Nudel mutant defective in association with either Lis1 or dynein heavy chain is shown to cause dispersions of membranous organelles whose trafficking depends on dynein. In contrast, the wild-type Nudel and the double mutant that binds to neither protein are much less effective. Time-lapse microscopy for lysosomes reveals significant reduction in both frequencies and velocities of their minus end-directed motions in cells expressing the dynein-binding defective mutant, whereas neither the durations of movement nor the plus end-directed motility is considerably altered. Moreover, silencing Nudel expression by RNA interference results in Golgi apparatus fragmentation and cell death. Together, it is concluded that Nudel is critical for dynein motor activity in membrane transport and possibly other cellular activities through interactions with both Lis1 and dynein heavy chain. 相似文献
7.
NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores 总被引:3,自引:1,他引:3 下载免费PDF全文
NudE and NudEL are related proteins that interact with cytoplasmic dynein and LIS1. Their functional relationship and involvement in LIS1 and dynein regulation are not completely understood. We find that NudE and NudEL each localize to mitotic kinetochores before dynein, dynactin, ZW10, and LIS1 and exhibit additional temporal and spatial differences in distribution from the motor protein. Inhibition of NudE and NudEL caused metaphase arrest with misoriented chromosomes and defective microtubule attachment. Dynein and dynactin were both displaced from kinetochores by the injection of an anti-NudE/NudEL antibody. Dynein but not dynactin interacted with NudE surprisingly through the dynein intermediate and light chains but not the motor domain. Together, these results identify a common function for NudE and NudEL in mitotic progression and identify an alternative mechanism for dynein recruitment to and regulation at kinetochores. 相似文献
8.
Pericentrin is a conserved protein of the centrosome involved in microtubule organization. To better understand pericentrin function, we overexpressed the protein in somatic cells and assayed for changes in the composition and function of mitotic spindles and spindle poles. Spindles in pericentrin-overexpressing cells were disorganized and mispositioned, and chromosomes were misaligned and missegregated during cell division, giving rise to aneuploid cells. We unexpectedly found that levels of the molecular motor cytoplasmic dynein were dramatically reduced at spindle poles. Cytoplasmic dynein was diminished at kinetochores also, and the dynein-mediated organization of the Golgi complex was disrupted. Dynein coimmunoprecipitated with overexpressed pericentrin, suggesting that the motor was sequestered in the cytoplasm and was prevented from associating with its cellular targets. Immunoprecipitation of endogenous pericentrin also pulled down cytoplasmic dynein in untransfected cells. To define the basis for this interaction, pericentrin was coexpressed with cytoplasmic dynein heavy (DHCs), intermediate (DICs), and light intermediate (LICs) chains, and the dynamitin and p150(Glued) subunits of dynactin. Only the LICs coimmunoprecipitated with pericentrin. These results provide the first physiological role for LIC, and they suggest that a pericentrin-dynein interaction in vivo contributes to the assembly, organization, and function of centrosomes and mitotic spindles. 相似文献
9.
10.
Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments 总被引:1,自引:0,他引:1 下载免费PDF全文
Recent studies have shown that the transport of microtubules (MTs) and neurofilaments (NFs) within the axon is rapid, infrequent, asynchronous, and bidirectional. Here, we used RNA interference to investigate the role of cytoplasmic dynein in powering these transport events. To reveal transport of MTs and NFs, we expressed EGFP-tagged tubulin or NF proteins in cultured rat sympathetic neurons and performed live-cell imaging of the fluorescent cytoskeletal elements in photobleached regions of the axon. The occurrence of anterograde MT and retrograde NF movements was significantly diminished in neurons that had been depleted of dynein heavy chain, whereas the occurrence of retrograde MT and anterograde NF movements was unaffected. These results support a cargo model for NF transport and a sliding filament model for MT transport. 相似文献
11.
A rabbit antibody to bovine brain MAP 1C was prepared. The antibody stained the mitotic spindle of PtK2 cells by immunofluorescence. On immunoblots of PtK2 cell extract the antibody reacted with polypeptides of molecular weights greater than 350 and 80 KD that resemble the subunit proteins of bovine brain MAP 1C. An additional 135 KD polypeptide in the extract was also stained. These results indicate that a cytoplasmic dynein recognizable by the anti-MAP 1C antibody is localized in the mitotic spindle. 相似文献
12.
13.
Mitotic spindle bipolarity defines a unique division plane that promotes the successful transmission of genetic material during cytokinesis. The positioning and orientation of the spindle determines the symmetry of cell division and the relative location of daughter cells, which regulate cell fate decisions that contribute to embryonic development and tissue differentiation. Recent studies have identified integrins as regulators of spindle positioning and orientation, as well as spindle bipolarity and cytokinesis. This review summarizes and discusses the current effort focused on understanding how integrins regulate these mitotic events. 相似文献
14.
Wong J Nakajima Y Westermann S Shang C Kang JS Goodner C Houshmand P Fields S Chan CS Drubin D Barnes G Hazbun T 《Molecular biology of the cell》2007,18(10):3800-3809
The mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins. We uncovered a pattern of extensive interactions between spindle proteins reflecting the intricate organization of the spindle. Furthermore, we observed novel connections between kinetochore complexes and chromatin-modifying proteins and used phosphorylation site mutants of NDC80/TID3 to gain insights into possible phospho-regulation mechanisms. We also present analyses of She1p, a novel spindle protein that interacts with the Dam1 kinetochore/spindle complex. The wealth of protein interactions presented here highlights the extent to which mitotic spindle protein functions and regulation are integrated with each other and with other cellular activities. 相似文献
15.
Cytoplasmic dynein is the motor protein responsible for the intracellular transport of various organelles and other cargoes toward microtubule minus ends. However, it remains to be determined how dynein is regulated to accomplish its varied roles. The dynein complex contains six subunits, including three classes of light chains. The two isoforms of the DYNLT (Tctex1) family of light chains, DYNLT1 and DYNLT3, have been proposed to link dynein to specific cargoes. However, no specific binding partner had been found for the DYNLT3 light chain. We find that DYNLT3 binds to Bub3, a spindle checkpoint protein. Bub3 binds exclusively to DYNLT3 and not to the other dynein light chains. Glutathione S-transferase pull-down and co-immunoprecipitation assays demonstrate that Bub3 interacts with the cytoplasmic dynein complex. DYNLT3 is present on kinetochores at prometaphase, but not later mitotic stages, demonstrating that this dynein light chain, like Bub3 and other checkpoint proteins, is depleted from the kinetochore during chromosome alignment. Knockdown of DYNLT3 with small interference RNA increases the mitotic index, in particular, the number of cells in prophase/prometaphase. These results demonstrate that dynein binds directly to a component of the spindle checkpoint complex through the DYNLT3 light chain. Thus, DYNLT3 contributes to dynein cargo binding specificity. These data also suggest that the subpopulation of dynein, containing the DYNLT3 light chain, may be important for chromosome congression, in addition to having a role in the transport of checkpoint proteins from the kinetochore to the spindle pole. 相似文献
16.
Yamada M Toba S Yoshida Y Haratani K Mori D Yano Y Mimori-Kiyosue Y Nakamura T Itoh K Fushiki S Setou M Wynshaw-Boris A Torisawa T Toyoshima YY Hirotsune S 《The EMBO journal》2008,27(19):2471-2483
LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We demonstrate that LIS1, cytoplasmic dynein and MT fragments co-migrate anterogradely. When LIS1 function was suppressed by a blocking antibody, anterograde movement of cytoplasmic dynein was severely impaired. Immunoprecipitation assay indicated that cytoplasmic dynein forms a complex with LIS1, tubulins and kinesin-1. In contrast, immunoabsorption of LIS1 resulted in disappearance of co-precipitated tubulins and kinesin. Thus, we propose a novel model of the regulation of cytoplasmic dynein by LIS1, in which LIS1 mediates anterograde transport of cytoplasmic dynein to the plus end of cytoskeletal MTs as a dynein-LIS1 complex on transportable MTs, which is a possibility supported by our data. 相似文献
17.
Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression. 相似文献
18.
Rafael Lucena Noah Dephoure Steve P. Gygi Douglas R. Kellogg Victor A. Tallada Rafael R. Daga Juan Jimenez 《The Journal of cell biology》2015,209(3):387-402
During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast. 相似文献
19.
Dynein isolated from ciliary axonemes of Tetrahymena is shown to bind in a characteristic fashion as arms to microtubules dissected from the nutritive tubes of insect ovarioles. The microtubules in nutritive tubes are associated with the transport of cytoplasmic components along their length, and the significance of their ability to bind axonemal dynein, to the possibility that microtubule/dynein interactions are involved in microtubule-associated movements, generally, is discussed. 相似文献
20.
Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein 总被引:7,自引:6,他引:7 下载免费PDF全文
Taxol, a microtubule stabilizing drug, induces the formation of numerous microtubule asters in the cytoplasm of mitotic cells (De Brabander, M., G. Geuens, R. Nuydens, R. Willebrords, J. DeMey. 1981. Proc. Natl. Acad. Sci. USA. 78:5608-5612). The center of these asters share with spindle poles some characteristics such as the presence of centrosomal material and calmodulin. We have recently reproduced the assembly of taxol asters in a cell-free system (Buendia, B., C. Antony, F. Verde, M. Bornens, and E. Karsenti. 1990. J. Cell Sci. 97:259-271) using extracts of Xenopus eggs. In this paper, we show that taxol aster assembly requires phosphorylation, and that they do not grow from preformed centers, but rather by a reorganization of microtubules first crosslinked into bundles. This process seems to involve sliding of microtubules along each other and we show that cytoplasmic dynein is required for taxol aster assembly. This result provides a possible functional basis to the recent findings, that dynein is present in the spindle and enriched near spindle poles (Pfarr, C. M., M. Cove, P. M. Grissom, T. S. Hays, M. E. Porter, and J. R. McIntosh. 1990. Nature (Lond.). 345:263-265; Steuer, E. R., L. Wordeman, T. A. Schroer, and M. P. Sheetz. 1990. Nature (Lond.). 345:266-268). 相似文献