首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Genetic Basis of Sex Ratio in Silene Alba (= S. Latifolia)   总被引:2,自引:1,他引:1       下载免费PDF全文
D. R. Taylor 《Genetics》1994,136(2):641-651
A survey of maternal families collected from natural populations showed that the sex ratio in Silene alba was slightly female biased. Sex ratio varied among populations and among families within a female biased population. Crosses among plants from the most female biased population and the most male biased population showed that the sex ratio polymorphism was inherited through or expressed in the male parent. Males from one family in particular exhibited a severe female bias, characterized by less than 20% male progeny. The inheritance of sex ratio was investigated using a reciprocal crossing design. Sex ratios from reciprocal crosses were significantly different, indicating either sex-linkage or cytoplasmic inheritance of sex ratio. The sex ratios produced by males generally resembled the sex ratios produced by their male parents, indicating that the sex ratio modifier was Y linked. The maternal parent also significantly influenced sex ratio through an interaction with the genotype of the paternal parent. Sex ratio, therefore, is apparently controlled by several loci. Although sex ratio bias in this species may be due to deleterious alleles on the Y chromosome, it is more likely to involve an interaction between loci that cause the female bias and a Y-linked locus that enhances the proportion of males in the progeny.  相似文献   

2.
Frequency‐dependent selection should drive dioecious populations toward a 1:1 sex ratio, but biased sex ratios are widespread, especially among plants with sex chromosomes. Here, we develop population genetic models to investigate the relationships between evolutionarily stable sex ratios, haploid selection, and deleterious mutation load. We confirm that when haploid selection acts only on the relative fitness of X‐ and Y‐bearing pollen and the sex ratio is controlled by the maternal genotype, seed sex ratios evolve toward 1:1. When we also consider haploid selection acting on deleterious mutations, however, we find that biased sex ratios can be stably maintained, reflecting a balance between the advantages of purging deleterious mutations via haploid selection, and the disadvantages of haploid selection on the sex ratio. Our results provide a plausible evolutionary explanation for biased sex ratios in dioecious plants, given the extensive gene expression that occurs across plant genomes at the haploid stage.  相似文献   

3.
In many angiosperm species, populations are reproductively subdivided into distinct sexual morphs including females, males and hermaphrodites. Sexual polymorphism is maintained by frequency-dependent selection, leading to predictable sex ratios at equilibrium. Charles Darwin devoted much of his book ‘The Different Forms of Flowers on Plants of the Same Species’ (1877) to investigating plant sexual polymorphisms and laid the foundation for many problems addressed today by integrating theory with empirical studies of the demography and genetics of populations. Here, we summarize our recent work on the ecological and genetic mechanisms influencing variation in sex ratios and their implications for evolutionary transitions among sexual systems. We present the results of a survey of sex ratios from 126 species from 47 angiosperm families and then address two general problems using examples from diverse angiosperm taxa: (i) the mechanisms governing biased sex ratios in dioecious species; (ii) the origins and maintenance of populations composed of females, males and hermaphrodites. Several themes are emphasized, including the importance of non-equilibrium conditions, the role of life history and demography in affecting sex ratios, the value of theory for modelling the dynamics of sex ratio variation, and the utility of genetic markers for investigating evolutionary processes in sexually polymorphic plant populations.  相似文献   

4.
In sexual organisms, low population density can result in mating failures and subsequently yields a low population growth rate and high chance of extinction. For species that are in tight interaction, as in host-parasitoid systems, population dynamics are primarily constrained by demographic interdependences, so that mating failures may have much more intricate consequences. Our main objective is to study the demographic consequences of parasitoid mating failures at low density and its consequences on the success of biological control. For this, we developed a deterministic host-parasitoid model with a mate-finding Allee effect, allowing to tackle interactions between the Allee effect and key determinants of host-parasitoid demography such as the distribution of parasitoid attacks and host competition. Our study shows that parasitoid mating failures at low density result in an extinction threshold and increase the domain of parasitoid deterministic extinction. When proned to mate finding difficulties, parasitoids with cyclic dynamics or low searching efficiency go extinct; parasitoids with high searching efficiency may either persist or go extinct, depending on host intraspecific competition. We show that parasitoids suitable as biocontrol agents for their ability to reduce host populations are particularly likely to suffer from mate-finding Allee effects. This study highlights novel perspectives for understanding of the dynamics observed in natural host-parasitoid systems and improving the success of parasitoid introductions.  相似文献   

5.
Many populations have consistently biased adult sex ratios with important demographic and evolutionary consequences. However, geographical variation, the mechanisms, temporal dynamics and predictors of biased sex ratios are notoriously difficult to explain. We studied 334 wild populations of four species of African annual fish (Nothobranchius furzeri, N. kadleci, N. orthonotus, N. rachovii) across their ranges to compare their adult sex ratio, its seasonal dynamics, interpopulation variation and environmental predictors. Nothobranchius populations comprise a single age cohort and inhabit discrete isolated pools, with wide-ranging environmental conditions (habitat size, water turbidity, structural complexity, predators), making them ideal to study adult sex ratio variation. In captivity adult sex ratios were equal. In natural populations, adult sex ratios were biased 1:2 toward females in three study species while N. kadleci had sex ratios at unity. There was a decline in the proportion of males with age in one species, but not in the other species, implying most severe male mortality early after maturation, declining later perhaps with a decrease in male abundance. In general, the populations at vegetated sites had relatively more males than populations at sites with turbid water and little vegetation. Selective avian predation on brightly coloured male fish likely contributed to female dominance and vegetation cover may have protected males from birds. In addition, an aquatic predator, a large belastomid hemipteran, decreased the proportion of males in populations, possibly due to greater male activity rather than conspicuous colouration. Alternative explanations for a sex ratio bias, stemming from male–male contests for matings, are discussed. We conclude that the effect of environmental conditions on adult sex ratio varies dramatically even in closely related and ecologically similar sympatric species. Therefore, difficulties in explaining the ecological predictors of sex ratio biases are likely due to high stochasticity rather than limited sample size.  相似文献   

6.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

7.
Pseudogamous females reproduce parthenogenetically but require sperm. We analyze a density- and frequency-dependent model for the ecological and evolutionary stability of bisexual populations exposed to invasion by pseudogamous clones. In particular, we examine the effects of partial niche overlap and asymmetric competition between sexual and asexual forms. The model predicts that for a variety of relative fitness values for asexual females, pseudogamous forms can successfully invade bisexual populations. The probability of successful invasion increases as niche overlap decreases. Furthermore, invaded populations are often likely to be stable; for the parameter values analyzed, only combinations of nearly complete niche overlap and high asexual fitness will lead to extinction. Even such combinations will be stable under pronounced asymmetric competition. Asymmetric competition does not, however, affect the invadability of bisexual populations. The model predicts that stable populations cannot have more than three or four females per male; populations with more biased sex ratios are expected to be unstable. We analyze available sex ratio data for pseudogamous insects, fish, and salamanders, and find significant changes in roughly one-half of the asexual-dominated populations, but in only one sexual-dominated population. This analysis includes previously unpublished data on population sex ratios in a pseudogamous bark beetle, Ips acuminatus. Some asexual-dominated populations have far more than four females per male, contrary to predictions of the model.  相似文献   

8.
Negative frequency‐dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long‐lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex‐ratio variation in two chromosome races of Rumex hastatulus, an annual, wind‐pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female‐biased sex ratios. Female‐biased sex ratios characterized most populations of R.  hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high‐density populations had the highest proportion of females, whereas smaller, low‐density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female‐biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.  相似文献   

9.
In host-parasitoid communities, hosts are subjected to selective pressures from numerous parasitoid species, and parasitoids may attack several host species. The specificity of host resistance and parasitoid virulence is thus a key factor in host-parasitoid coevolution. A continuum of strategies exists, from strict specificity to a generalist strategy. The optimal level of specificity may differ in host and parasitoid. I investigated the optimal level of resistance specificity using a model in which the host could be attacked by two parasitoid species, with variable levels of defense specificity. The fitness of a parasitoid attacking two host species with different levels of virulence specificity was also modeled. Finally, a fluctuating environment was simulated by introducing variable probabilities of encounters between antagonistic species over several generations. If the frequency of encounters with the antagonistic species is fixed, then both host and parasitoid gain from a strategy of exclusive specialization toward the most frequent antagonist. If the frequency of encounters fluctuates between generations, generalist host resistance and partially specialist parasitoid virulence are favored. Generalist host resistance may be considered to be a bet-hedging response to an unpredictable environment. This asymmetry in host-parasitoid coevolution may account for some of the genetic structures observed in the field for host-parasitoid associations.  相似文献   

10.
It is well known that a simple first-order difference equation can exhibit complex population dynamics, such as sustained oscillations and chaos. An interesting problem is whether such oscillatory dynamics are expected to occur in real populations. This paper assumes that the resident system is composed of 1-host and 1-parasitoid and that only the host is allowed to evolve, but not the parasitoid. Based on the invasibility of a host to host-parasitoid systems, we investigate the dynamics of the host-parasitoid system favored by natural selection. We consider two cases. In the first case, the host's evolution involving both the intrinsic growth rate and the sensitivity to density is considered. In the second case, the host's evolution involving both the intrinsic growth rate and the vulnerability to the parasitoid is considered. In both cases, we see that the dynamics with a stable equilibrium will not be favored by natural selection without the trade-off between the host's traits which are allowed to evolve. The host-parasitoid system with a stable equilibrium will be eventually invaded by a host type that develops an unstable equilibrium with the parasitoid. If there is a trade-off between the host's traits which are allowed to evolve, a host-parasitoid system with a stable equilibrium can be favored by natural selection.  相似文献   

11.
ABSTRACT.
  • 1 A method of partitioning emergence sex-ratio to give estimates of primary sex-ratio and male and female offspring survival from oviposition to emergence in solitary haplo-diploid parasitoids is presented.
  • 2 This method is applied to sex-ratio data from a larval parasitoid, Aphidius ervi Haliday, and a pupal parasitoid, Coccygomimus turionella L., parasitizing a range of host types.
  • 3 There was no evidence of facultative control of primary sex-ratio in either species. Parasitoid emergence sex-ratios were similar for all host sizes attacked by C. turionella. In contrast, emergence sex-ratios of A.ervi showed a significant male bias in smaller hosts. This shift in emergence sex-ratio was attributable to differential progeny survival.
  • 4 Pre-emergence mortality in both species was a function of host size, with few offspring surviving from small hosts. This suggests that host size may be an important component in the dynamics of host-parasitoid interactions.
  • 5 The evolution of sex-ratio regulatory mechanisms in solitary haplo-diploid parasitoids is discussed in the context of parasitoid life-history. We suggest that there is a constraint to the evolution of the facultative control of primary sex-ratio in parasitoids attacking larval stages as a result of the uncertainty of future host resource acquisition rates.
  相似文献   

12.
Sex allocation theory has been remarkably successful at explaining the prevalence of even sex ratios in natural populations and at identifying specific conditions that can result in biased sex ratios. Much of this theory focuses on parental sex determination (SD) strategies. Here, we consider instead the evolutionary causes and consequences of mixed offspring SD strategies, in which the genotype of an individual determines not its sex, but the probability of developing one of multiple sexes. We find that alleles specifying mixed offspring SD strategies can generally outcompete alleles that specify pure strategies, but generate constraints that may prevent a population from reaching an even sex ratio. We use our model to analyze sex ratios in natural populations of Tetrahymena thermophila, a ciliate with seven sexes determined by mixed SD alleles. We show that probabilistic SD is sufficient to account for the occurrence of skewed sex ratios in natural populations of T. thermophila, provided that their effective population sizes are small. Our results highlight the importance of genetic drift in sex ratio evolution and suggest that mixed offspring SD strategies should be more common than currently thought.  相似文献   

13.
Yu L  Lu J 《PloS one》2011,6(8):e22903
The Thousand-Island Lake region in Zhejiang Province, China is a highly fragmented landscape with a clear point-in-time of fragmentation as a result of flooding to form the reservoir. Islands in the artificial lake were surveyed to examine how population sex ratio of a dioecious plant specie Pistacia chinensis B. was affected by landscape fragmentation. A natural population on the mainland near the lake was also surveyed for comparison. Population size, sex ratio and diameter at breast height (DBH) of individuals were measured over 2 years. More than 1,500 individuals, distributed in 31 populations, were studied. Soil nitrogen in the different populations was measured to identify the relationship between sex ratio and micro-environmental conditions. In accordance with the results of many other reports on biased sex ratio in relation to environmental gradient, we found that poor soil nitrogen areas fostered male-biased populations. In addition, the degree of sex ratio bias increased with decreasing population size and population connectivity. The biased sex ratios were only found in younger individuals (less than 50 years old) in small populations, while a stable 1∶1 sex ratio was found in the large population on the mainland. We concluded that the effects of landscape fragmentation on the dioecious population sex ratio were mainly achieved in relation to changing soil nitrogen conditions in patches and pollen limitation within and among populations. Large populations could maintain a more suitable environment in terms of nutrient conditions and pollen flow, subsequently maintaining a stable sex ratio in dioecious plant populations. Both micro-environmental factors and spatial structure should be considered in fragmented landscape for the conservation of dioecious plant species.  相似文献   

14.
Sex ratio variation is commonly observed in natural populations of many organisms with separate sexes and genetic sex determination, including bryophytes. Most bryophyte populations exhibit female-skewed expressed adult sex ratios, generally inferred from counts of sexually mature plants. For the rarely sexually reproducing perennial dioicous moss Drepanocladus lycopodioides, we showed that a female bias also exists in the genetic adult sex ratio, using a specifically designed molecular sex-associated marker. Here, we investigated whether the meiotic spore sex ratio contributes to the observed bias in genetic adult sex ratio in natural populations. Earlier attempts to study meiotic sex ratios have involved commonly cultivated ruderals that rapidly express sex in the laboratory. We established single-spore cultures from field-collected sporophytes from these populations and used the marker to assess the sex of individual sporelings. Spore germinability was (near) complete, and mortality among sporelings was virtually absent. The true meiotic sex ratio did not differ from equality, but strongly differed both from the observed genetic sex ratios in the natural adult populations, and from the European scale genetic sex ratio. We conclude that the biased population sex ratios in this species arise at life cycle stages after spore germination. Sexual dimorphism may selectively favour female proliferation during some phase of gametophyte development. Based on methodological progress, we successfully used a perennial study species with rare sexual reproduction, which significantly broadens the life history spectrum investigated in bryophyte sex ratio studies.  相似文献   

15.
Sex ratios are subject to distortion by a range of inherited parasites [1]. Although it has been predicted that the presence of these elements will result in spatial and temporal variation in host sex ratio [2], [3] and [4], testing of this hypothesis has been constrained by availability of historical data. We here determine spatial and temporal variation in sex ratio in a interaction between a butterfly and male-killing Wolbachia bacteria [5] by assaying infection presence in museum specimens, and from this inferring infection prevalence and phenotype in historical populations. Comparison of contemporary and museum samples revealed profound change in four of five populations examined. Two populations become extremely female biased, associated with spread of the male-killer bacterium. One evolved from extremely female biased to a sex ratio near parity, resulting from the infection losing male-killing activity. The final population fluctuated widely in sex ratio, associated with varying frequency of the male killer. We conclude that asynchronous invasion and decline of sex-ratio distorters combines with the evolution of host suppressors to produce a rapidly changing mosaic of sex ratio. As a consequence, the reproductive ecology of the host species is likely to be fundamentally altered over short time scales [6]. Further, the study demonstrates the utility of museum specimens as “silent witnesses” of evolutionary change.  相似文献   

16.
Populations that experience different local climates, such as those along a latitudinal gradient, must match life history traits to local environmental conditions. In species with temperature-dependent sex determination, such as many reptiles, population sex ratio is strongly influenced by local climate, yet local climate differs substantially among populations in geographically-widespread species. We studied the painted turtle at three sites across the species’ geographic range to gain a mechanistic understanding of how sex ratios are produced under different local climates. We combined data on maternal nest-site choice, nest incubation temperature, and the resultant offspring sex ratio of populations across a climatic gradient, to demonstrate how geographic variation in behavior and physiology translates into sex ratios among populations of a widely-distributed species. We found that populations across the species’ geographic range match incubation conditions with local climatic conditions through population-specific adjustment of maternal nest-site choice. Incubation temperatures during the thermosensitive period were cooler and clutches were more male-biased in the south, with populations farther north having warmer incubation temperatures and more female-biased sex ratios, yet adult sex ratios were not strongly biased in any population. Most components of maternal nest-site choice varied latitudinally among populations, suggesting that the species may have a considerable repertoire for responding to climate change through adjustment of nest-site choice.  相似文献   

17.
Spatial structure has been shown to favor female‐biased sex allocation, but current theory fails to explain male biases seen in many taxa, particularly those with environmental sex determination (ESD). We present a theory and accompanying individual‐based simulation model that demonstrates how population structure leads to male‐biased population sex ratios under ESD. Our simulations agree with earlier work showing that the high productivity of female‐producing habitats creates a net influx of sex‐determining alleles into male‐producing habitats, causing larger sex ratio biases, and lower productivity in male‐producing environments (Harts et al. 2014). In contrast to previous findings, we show that male‐biasing habitats disproportionately impact the global sex ratio, resulting in stable male‐biased population sex ratios under ESD. The failure to detect a male bias in earlier work can be attributed to small subpopulation sizes leading to local mate competition, a condition unlikely to be met in most ESD systems. Simulations revealed that consistent male biases are expected over a wide range of population structures, environmental conditions, and genetic architectures of sex determination, with male excesses as large as 30 percent under some conditions. Given the ubiquity of genetic structure in natural populations, we predict that modest, enduring male biased allocation should be common in ESD species, a pattern consistent with reviews of ESD sex ratios.  相似文献   

18.
The evolution of sex ratios and sex-determining systems   总被引:3,自引:0,他引:3  
Sex determination is a fundamental process governed by diverse mechanisms. Sex ratio selection is commonly implicated in the evolution of sex-determining systems, although formal models are rare. Here, we argue that, although sex ratio selection can induce shifts in sex determination, genomic conflicts between parents and offspring can explain why single-factor systems (e.g. XY/XX or ZW/ZZ) are common even in species that experience selection for biased sex ratios. Importantly, evolutionary shifts in sex determination do not always result in the biased production of sons and daughters sensu sex ratio theory. Thus, equal sex ratios might be an emergent character of sex-determining systems even when biased sex ratios are favored by selection.  相似文献   

19.
1. Parasitic Hymenoptera reproduce by arrhenotokous parthenogenesis, and females of these species are able to control their progeny sex ratios. In structured populations of parasitic Hymenoptera, primary sex ratios are often highly biased toward females. However, sex ratio can be adjusted to the quality of encountered patches or hosts or be modified by differential developmental mortality.
2. In this paper, the effects were evaluated of the quality of encountered hosts and developmental mortality on the sex ratio in Anaphes victus , a solitary egg parasitoid whose first instar larvae present a sexual dimorphism and where superparasitism is regulated by larval fights between first instar larvae.
3. The results showed that a female-biased sex ratio is allocated to unparasitized hosts. In the presence of parasitized hosts, the second (superparasitizing) female produced a significantly higher sex ratio than the first female but the tertiary sex ratio (sex ratio at emergence) was not significantly different from the sex ratio produced with unparasitized hosts. The increase in the primary sex ratio produced by the second female was mostly compensated by the higher mortality of male larvae.  相似文献   

20.
Summary A simple mathematical model of host-parasitoid interaction with host-feeding was presented with special reference to the system of the greenhouse whitefly and the parasitoidEncarsia formosa. In the model, when a parasitoid encounters a host, it has a choice between feeding the host and ovipositing one egg in the host. It was shown that an intermediate value of the feeding ratio of all attacks gives the minimum equilibrium host density and the minimum amplitudes of fluctuation in the densities of the two species. Computer simulations of a modified model with time lags also gave the similar results. The model suggested for natural enemy introduction program that parasitoid species with host-feeding habits are promising agents for effective controls for pest insects and that the timing of introduction is very important. By an evolutionary analysis, it was shown that the feeding ratio evolves to minimize the host density under natural selection among parasitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号