首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.  相似文献   

2.
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0‐ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein‐coated substrata and P0‐ECM. Low chondrocyte attachment was observed on aggrecan‐coated substratum and P0‐ECM. Cell proliferation on aggrecan‐ and type II collagen/aggrecan‐coated substrata and P0‐ECM was lower than that on the other ECM protein (type I collagen and type II collagen)‐coated substrata. When chondrocytes were subcultured on aggrecan‐coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0‐ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0‐ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1331–1336, 2013  相似文献   

3.
Deposition of type X collagen in the cartilage extracellular matrix   总被引:1,自引:0,他引:1  
In cultured chick embryo chondrocytes, type X collagen is preferentially deposited in the extracellular matrix, the ratio between type II and type X collagen being about 5 times higher in the culture medium than in the cell layer. When the newly synthesized collagens deposited in slices from the epiphyseal cartilage of 17-day-old embryo tibiae were isolated, type X collagen was always the major species. In agreement with this result the mRNA for type X collagen was the predominant mRNA species purified from the same tissue. When the total collagen (unlabeled) deposited in the epiphyseal cartilage was analyzed, it was observed that type X collagen represented only 1/15 of the type II collagen recovered in the same preparation. The possible explanations for these differences are discussed.  相似文献   

4.
The interaction of the cell with its surrounding extracellular matrix (ECM) has a major effect on cell metabolism. We have previously shown that chondrons, chondrocytes with their in vivo-formed pericellular matrix, can be enzymatically isolated from articular cartilage. To study the effect of the native chondrocyte pericellular matrix on ECM production and assembly, chondrons were compared with chondrocytes isolated without any pericellular matrix. Immediately after isolation from human cartilage, chondrons and chondrocytes were centrifuged into pellets and cultured. Chondron pellets had a greater increase in weight over 8 weeks, were more hyaline appearing, and had more type II collagen deposition and assembly than chondrocyte pellets. Minimal type I procollagen immunofluorescence was detected for both chondron and chondrocyte pellets. Chondron pellets had a 10-fold increase in proteoglycan content compared with a six-fold increase for chondrocyte pellets over 8 weeks (P<0.0001). There was no significant cell division for either chondron or chondrocyte pellets. The majority of cells within both chondron and chondrocyte pellets maintained their polygonal or rounded shape except for a thin, superficial edging of flattened cells. This edging was similar to a perichondrium with abundant type I collagen and fibronectin, and decreased type II collagen and proteoglycan content compared with the remainder of the pellet. This study demonstrates that the native pericellular matrix promotes matrix production and assembly in vitro. Further, the continued matrix production and assembly throughout the 8-week culture period make chondron pellet cultures valuable as a hyaline-like cartilage model in vitro.  相似文献   

5.
Chen WC  Yao CL  Wei YH  Chu IM 《Cytotechnology》2011,63(1):13-23
The feasibility of using genipin cross-linked type II collagen scaffold with rabbit bone marrow mesenchymal stem cells (RBMSCs) to repair cartilage defect was herein studied. Induction of RBMSCs into chondrocytic phenotype on type II collagen scaffold in vitro was conducted using TGF-β 3 containing medium. After 3-weeks of induction, chondrocytic behavior, including marker genes expression and specific extracellular matrix (ECM) secretion, was observed. In the in vivo evaluation experiment, the scaffolds containing RBMSCs without prior induction were autologous implanted into the articular cartilage defects made by subchondral drilling. The repairing ability was evaluated. After 2 months, chondrocyte-like cells with lacuna structure and corresponding ECM were found in the repaired sites without apparent inflammation. After 24 weeks, we could easily find cartilage structure the same with normal cartilage in the repair site. In conclusion, it was shown that the scaffolds in combination of in vivo conditions can induce RBMSCs into chondrocytes in repaired area and would be a possible method for articular cartilage repair in clinic and cartilage tissue engineering.  相似文献   

6.
K Kikukawa  K Suzuki 《Teratology》1992,46(5):509-523
The osteochondrodysplasia rat (ocd/ocd) is a lethal dwarfism. The ocd/ocd shows histological abnormalities of the epiphysis, characterized by a decrease in amount of glycosaminoglycans (GAGs) in the extracellular matrix (ECM). The present study describes histochemical and immunohistochemical distributions of GAGs, type II collagen, and fibronectin (FN) in abnormal humeral cartilage of the ocd/ocd fetuses on days 16-21 of gestation. A wide-spread region with severe necrosis was observed in the cartilage on days 20 and 21. The affected cartilage has small amounts of ECM, irregular columnizations, thinner hypertrophic zones, and expanded and pyknotic chondrocytes on days 16-21 of gestation. The severely expanded chondrocytes did not have cytoplasmic glycogens on days 19-21. Reactions for chondroitin sulfate (CS) and hyaluronic acid (HA) in the ECM were consistently lower in ocd/ocd than in +/+ during the entire period of observation, although there were granules immunoreactive to CS within the chondrocytes of ocd/ocd. The distribution of type II collagen seemed normal in relatively normal regions in the affected cartilage. Strong reactions for CS, HA, type II collagen, and FN were present in the necrotic region on days 20 and 21 of gestation. These findings suggest that the affected chondrocyte may have some defects in releasing ECM substances, which may be released by the process of cell rupture. We hypothesize that some defects in releasing processes inherent to the ocd/ocd cartilage may relate to cellular differentiation and cell death.  相似文献   

7.
Type II collagen is a major protein that maintains biological and mechanical characteristics in articular cartilage. Focal adhesion kinase (FAK) is known to play a central role in integrin signaling of cell–extracellular matrix (ECM) interactions, and chondrocyte–type II collagen interactions are very important for cartilage homeostasis. In this study, we focused on phosphorylation of FAK and MAP kinase in chondrocyte–type II collagen interaction and dedifferentiation, and the effects of FAK knockdown on chondrocyte‐specific gene expression and cell proliferation were determined. The addition of exogenous type II collagen to chondrocytes increased levels of tyrosine phosphorylation, p‐FAKY397, and p‐ERK1/2. In contrast, expression levels of p‐FAKY397 and p‐ERK1/2, but not p‐Smad2/3, were decreased in dedifferentiated chondrocytes with loss of type II collagen expression. Type II collagen expression was significantly increased when dedifferentiated chondrocytes were transferred to alginate beads with TGF‐β1 or type II collagen, but transfected cells with small interfering RNA for FAK (FAK‐siRNA) inhibited mRNA expression of type II collagen and SOX‐6 compared to the control. These FAK‐siRNA‐transfected cells could not recover type II collagen even in the presence of TGF‐β1 or type II collagen in alginate beads culture. We also found that FAK‐siRNA‐transfected cells decreased cell proliferation rate, but there was no effect on glycosaminoglycans (GAGs) secretion. We suggest that FAK is essentially required in chondrocyte communication with type II collagen by regulating type II collagen expression and cell proliferation. J. Cell. Physiol. 218: 623–630, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The cartilage tissue has a limited self-regenerative capacity. Tissue-engineering represents a promising trend for cartilage repair. The present study was aimed to develop a biomaterial formulation by combining fragments of chitosan hydrogel with isolated rabbit or human chondrocytes. We first reported the properties of the constructs elaborated with rabbit chondrocytes and pure chitosan physical hydrogels with defined molecular weight, acetylation degree and polymer concentration. Morphological data showed that chondrocytes were not penetrating the hydrogels but tightly bound to the surface of the fragments and spontaneously formed aggregates of combined cell/chitosan. A significant amount of neo-formed cartilage-like extracellular matrix (ECM) was first accumulated in-between cells and hydrogel fragments and furthermore was widely distributed within the neo-construct. The optimal biological response was obtained with hydrogel fragments concentrated at 1.5% (w/w) of polymer made from a chitosan with a degree of acetylation between 30 and 40%. Such hydrogels were then mixed with human chondrocytes. The phenotype of the cells was analyzed by using chondrocytic (mRNA expression of mature type II collagen and aggrecan as well as secretion of proteoglycans of high molecular weight) and non chondrocytic (mRNA expression of immature type II collagen and type I collagen) molecular markers. As compared with human chondrocytes cultured without chitosan hydrogel which rapidly dedifferentiated in primary culture, cells mixed with chitosan rapidly loose the expression of type I and immature type II collagen while they expressed mature type II collagen and aggrecan. In these conditions, chondrocytes maintained their phenotype for as long as 45 days, thus forming cartilage-like nodules. Taken together, these data suggest that a chitosan hydrogel does not work as a scaffold, but could be considered as a decoy of cartilage ECM components, thus favoring the binding of chondrocytes to chitosan. Such a biological response could be described by the concept of reverse encapsulation.  相似文献   

9.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   

10.
11.
This study compares the collagen types present in rabbit ear cartilage with those synthesized by dissociated chondrocytes in cell culture. The cartilage was first extracted with 4M-guanidinium chloride to remove proteoglycans. This step also extracted type I collagen. After pepsin solubilization of the residue, three additional, genetically distinct collagen types could be separated by fractional salt precipitation. On SDS (sodium dodecyl sulphate)/polyacrylamide-gel electrophoresis they were identified as type II collagen, (1 alpha, 2 alpha, 3 alpha) collagen and M-collagen fragments, a collagen pattern identical with that found in hyaline cartilage. Types I, II, (1 alpha, 2 alpha, 3 alpha) and M-collagen fragments represent 20, 75, 3.5, and 1% respectively of the total collagen. In frozen sections of ear cartilage, type II collagen was located by immunofluorescence staining in the extracellular matrix, whereas type I collagen was closely associated with the chondrocytes. Within 24h after release from elastic cartilage by enzymic digestion, auricular chondrocytes began to synthesize type III collagen, in addition to the above-mentioned collagens. This was shown after labelling of freshly dissociated chondrocytes with [3H]proline 1 day after plating, fractionation of the pepsin-treated collagens from medium and cell layer by NaCl precipitation, and analysis of the fractions by CM(carboxymethyl)-cellulose chromatography and SDS/polyacrylamide-gel electrophoresis. The 0.8 M-NaCl precipitate of cell-layer extracts consisted predominantly of type II collagen. The 0.8 M-NaCl precipitate obtained from the medium contained type I, II, and III collagen. In the supernatant of the 0.8 M-NaCl precipitation remained, both in the cell extract and medium, predominantly 1 alpha-, 2 alpha-, and 3 alpha-chains and M-collagen fragments. These results indicate that auricular chondrocytes are similar to chondrocytes from hyaline cartilage in that they produce, with the exception of type I collagen, the same collagen types in vivo, but change their cellular phenotype more rapidly after transfer to monolayer culture, as indicated by the prompt onset of type III collagen synthesis.  相似文献   

12.
Chondroadherin is a cell binding, leucine-rich repeat protein found in the territorial matrix of articular cartilage. Several members of the leucine-rich repeat protein family present in the extracellular matrix of e.g. cartilage have been shown to interact with collagen and influence collagen fibrillogenesis. We show that complexes of monomeric collagen type II and chondroadherin can be released under non-denaturing conditions from articular cartilage treated with p-aminophenylmercuric acetate to activate resident matrix metalloproteinases. Purified complexes as well as complexes formed in vitro between recombinant chondroadherin and collagen type II were studied by electron microscopy. Chondroadherin was shown to bind to two sites on collagen type II. The interaction was characterized by surface plasmon resonance analysis showing K(D) values in the nanomolar range. Both chondroadherin and collagen interact with chondrocytes, partly via the same receptor, but give rise to different cellular responses. By also interacting with each other, a complex system is created which may be of functional importance for the communication between the cells and its surrounding matrix and/or in the regulation of collagen fibril assembly.  相似文献   

13.
Chick embryo tibial chondrocytes release into their extracellular matrix several species of proteochondroitin sulfate and collagen as well as matrix vesicles that are rich in Ca2+ and alkaline phosphatase and that appear to play a role in the calcification of cartilage. To determine whether there was any parallel regulation of the production of these products, the rates of collagen synthesis by cultured chick embryo tibial chondrocytes were altered, and the resulting changes in proteochondroitin sulfate synthesis and alkaline phosphatase levels in the cells were measured. As the rate of collagen synthesis was increased by adding increasing amounts of ascorbic acid to the culture medium, there was a parallel increase in the level of alkaline phosphatase. Similarly, when the rate of collagen synthesis was inhibited by adding 3,4-dehydroproline to the culture medium, the levels of alkaline phosphatase fell. The alkaline phosphatase in the culture medium was associated with vesicles which appeared to be matrix vesicles. It was recovered quantitatively by filtration through membranes with a pore size of 0.1 mu and measured by solubilizing the alkaline phosphatase from the membrane with detergent and assaying with 4-methylumbelliferyl phosphate as the substrate. When the matrix vesicles from the culture medium were analyzed for collagen types, it was found that only Type X collagen was recovered in this fraction. The implications of the association of Type X collagen and the matrix vesicles, both of which are found primarily in growth plate cartilage in the zone of hypertrophied chondrocytes which is in the process of mineralization, are discussed.  相似文献   

14.
Fibronectin, the major cell surface glycoprotein of fibroblasts, is absent from differentiated cartilage matrix and chondrocytes in situ. However, dissociation of embryonic chick sternal cartilage with collagenase and trypsin, followed by inoculation in vitro reinitiates fibronectin synthesis by chondrocytes. Immunofluorescence microscopy with antibodies prepared against plasma fibronectin (cold insoluble globulin [CIG]) reveals fibronectin associated with the chondrocyte surface. Synthesis and secretion of fibronectin into the medium are shown by anabolic labeling with [35S]methionine or [3H]glycine, and identification of the secreted proteins by immunoprecipitation and sodium dodecyl sulfate (SDS)-disc gel electrophoresis. When chondrocytes are plated onto tissue culture dishes, the pattern of surface-associated fibronectin changes from a patchy into a strandlike appearance. Where epithelioid clones of polygonal chondrocytes develop, only short strands of fibronectin appear preferentially at cellular interfaces. This pattern is observed as long as cells continue to produce type II collagen that fails to precipitate as extracellular collagen fibers for some time in culture. Using the immunofluorescence double-labeling technique, we demonstrate that fibroblasts as well as chondrocytes which synthesize type I collagen and deposit this collagen as extracellular fibers show a different pattern of extracellular fibronectin that codistributes in large parts with collagen fibers. Where chondrocytes begin to accumulate extracellular cartilage matrix, fibronectin strands disappear. From these observations, we conclude (a) that chondrocytes synthesize fibronectin only in the absence of extracellular cartilage matrix, and (b) that fibronectin forms only short intercellular "stitches" in the absence of extracellular collagen fibers in vitro.  相似文献   

15.
Bone marrow mesenchymal stem cells (MSCs) are candidate cells for cartilage tissue engineering. This is due to their ability to undergo chondrogenic differentiation after extensive expansion in vitro and stimulation with various biomaterials in three-dimensional (3-D) systems. Collagen type II is one of the major components of the hyaline cartilage and plays a key role in maintaining chondrocyte function. This study aimed at analyzing the MSC chondrogenic response during culture in different types of extracellular matrix (ECM) with a focus on the influence of collagen type II on MSC chondrogenesis. Bovine MSCs were cultured in monolayer as well as in alginate and collagen type I and II hydrogels, in both serum free medium and medium supplemented with transforming growth factor (TGF) beta1. Chondrogenic differentiation was detected after 3 days of culture in 3-D hydrogels, by examining the presence of glycosaminoglycan and newly synthesized collagen type II in the ECM. Differentiation was most prominent in cells cultured in collagen type II hydrogel, and it increased in a time-dependent manner. The expression levels of the of chondrocyte specific genes: sox9, collagen type II, aggrecan, and COMP were measured by quantitative "Real Time" RT-PCR, and genes distribution in the hydrogel beads were localized by in situ hybridization. All genes were upregulated by the presence of collagen, particularly type II, in the ECM. Additionally, the chondrogenic influence of TGF beta1 on MSCs cultured in collagen-incorporated ECM was analyzed. TGF beta1 and dexamethasone treatment in the presence of collagen type II provided more favorable conditions for expression of the chondrogenic phenotype. In this study, we demonstrated that collagen type II alone has the potential to induce and maintain MSC chondrogenesis, and prior interaction with TGF beta1 to enhance the differentiation.  相似文献   

16.
The goal of this study was to examine the effects of mechanical compression on chondrocyte biosynthesis of extracellular matrix (ECM) components during culture in a new alginate disk culture system. Specifically, we have examined chondrocyte biosynthesis rates, and the structure of aggrecan core protein species present in the cell-associated matrix (CM), in the further removed matrix (FRM) and in the surrounding culture medium. In this alginate disk culture system, chondrocytes can be subjected to mechanical deformations similar to those experienced in vivo. Our results show that over an 8-week culture period, chondrocytes synthesize a functional ECM and can respond to mechanical forces similarly to chondrocytes maintained in native cartilage. In the alginate disk system, static compression was shown to decrease and dynamic compression to increase synthesis of aggrecan of bovine chondrocytes. Western blot analysis of the core proteins of aggrecan molecules identified a number of different species that were present in different relative amounts in the CM, FRM, and medium. Over 21 days of culture, the predominant form of aggrecan found in the ECM was a full-length link-stabilized species. In addition, our data show that the application of 40 h of static compression caused an increase in the proportion of newly synthesized aggrecan molecules released into the medium. However, this was not accompanied by a significant change in the size and composition of aggrecan and aggrecan fragments in the different compartments, suggesting that mechanical compression did not alter the catabolic pathways. Together, these data show that chondrocyte function is maintained in an alginate disk culture system and that this culture system is a useful model to examine chondrocyte ECM assembly and some aspects of catabolism normally found in vivo.  相似文献   

17.
Degradation of the extracellular matrix (ECM) is a prominent feature in osteoarthritis (OA), which is mainly because of the imbalance between anabolic and catabolic processes in chondrocytes resulting in cartilage and bone destruction. Various proteases act in concert to degrade matrix components, e.g. type II collagen, MMPs, ADAMTS, and cathepsins. Protease-generated collagen fragments may foster the destructive process. However, the signaling pathways associated with the action of collagen fragments on chondrocytes have not been clearly defined. The present data demonstrate that the N-terminal telopeptide of collagen type II enhances expression of cathepsins B, K, and L in articular chondrocytes at mRNA, protein, and activity levels, mediated at least in part through extracellular calcium. We also demonstrate that the induction is associated with the activation of protein kinase C and p38 MAP kinase.  相似文献   

18.
Type II procollagen messenger ribonucleic acid (mRNA) was isolated from chick sternum and rat chondrosarcoma cells and translated in a reticulocyte lysate cell-free system. A high molecular weight band was identified as type II procollagen by gel electrophoresis, collagenase digestion, and specific immunoprecipitation. The translation of type II mRNA was specifically inhibited by addition of type I procollagen amino-terminal extension peptide. When this peptide was added to the media of cultured fetal calf chondrocytes, chick sternal chondrocytes, or chick tendon fibroblasts, no inhibition of collagen synthesis was evident. These data suggest a general regulation of collagen biosynthesis by these peptides in the cell-free translation system. However, as indicated by the cell culture experiments, cellular characteristics and evolutionary divergence of animal species seem to restrict the effect of the peptides.  相似文献   

19.
We have employed a highly specific in situ hybridization protocol that allows differential detection of mRNAs of collagen types I and II in paraffin sections from chick embryo tissues. All probes were cDNA restriction fragments encoding portions of the C-propeptide region of the pro alpha-chain, and some of the fragments also encoded the 3'-untranslated region of mRNAs of either type I or type II collagen. Smears of tendon fibroblasts and those of sternal chondrocytes from 17-d-old chick embryos as well as paraffin sections of 10-d-old whole embryos and of the cornea of 6.5-d-old embryos were hybridized with 3H-labeled probes for either type I or type II collagen mRNA. Autoradiographs revealed that the labeling was prominent in tendon fibroblasts with the type I collagen probe and in sternal chondrocytes with the type II collagen probe; that in the cartilage of sclera and limbs from 10-d-old embryos, the type I probe showed strong labeling of fibroblast sheets surrounding the cartilage and of a few chondrocytes in the cartilage, whereas the type II probe labeled chondrocytes intensely and only a few fibroblasts; and that in the cornea of 6.5-d-old embryos, the type I probe labeled the epithelial cells and fibroblasts in the stroma heavily, and the endothelial cells slightly, whereas the type II probe labeled almost exclusively the epithelial cells except for a slight labeling in the endothelial cells. These data indicate that embryonic tissues express these two collagen genes separately and/or simultaneously and offer new approaches to the study of the cellular regulation of extracellular matrix components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号