首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free fatty acid release from endothelial cells   总被引:1,自引:0,他引:1  
Cultured bovine aortic endothelial cells that have been previously enriched with fatty acid are able to release free fatty acid (FFA) into the extracellular fluid. No stimulus other than the presence of albumin in the medium is needed to elicit the FFA release. Intracellular triglycerides appear to be the source of most of the FFA that is released. The released FFA is composed of a mixture of fatty acids, with the fatty acid used to enrich the cells contributing about half of the total. Under certain conditions sufficient fatty acid can be released to increase the FFA concentration of the extracellular fluid. Cells enriched initially with arachidonic acid released 1.7- to 2.9-times more FFA as compared to cells enriched with corresponding amounts of oleic acid. Neither prostaglandins nor lipoxygenase products contributed appreciably to the amount of FFA released from cells enriched with arachidonic acid. Porcine pulmonary artery endothelial cells also can release net amounts of FFA. These findings indicate that endothelial cells have the capacity to release fatty acid in the form of FFA. This process could possibly play a role in the transfer of fatty acids, particularly arachidonic acid, across the endothelium.  相似文献   

2.
Studies with Ehrlich ascites tumor cells showed that small decreases in the pH of the incubation medium from 7.4 increase the magnitude of incorporation of free fatty acid (FFA) into the cells from an albumin solution. A similar effect occurred when rabbit erythrocytes, rat heart slices, or rat liver slices were incubated with FFA-bovine albumin solutions and when tumor cells were incubated with FFA in media containing human albumin, -lactoglobulin, or rat plasma. The effect was not seen when the medium contained no protein. When the pH of the albumin-containing medium was lowered from 7.4 to 6.6, oxidation of FFA to CO(2) by the tumor cells increased, esterification of the FFA (mostly into phospholipids and triglycerides) increased, and less esterified radio-active fatty acid was depleted from the cells. Hence, more fatty acid accumulated in the cells in more acid media. These findings suggest that small changes in extracellular pH might regulate FFA utilization and lipid accumulation in mammalian tissues.  相似文献   

3.
Glucose greatly increased total free fatty acid (FFA) esterification by Ehrlich ascites tumor cells. However, the FFA concentration of the cells was not altered. Less exogenous FFA was oxidized to CO(2) at any given extracellular FFA:albumin molar ratio when glucose was available, but increasing amounts of radioactive CO(2) were produced as the FFA:albumin molar ratio was raised, even in the presence of glucose. It is suggested that glucose, by providing either energy or an excess of triose acceptor for fatty acid esterification, stimulated FFA uptake only indirectly, by increasing the utilization of FFA subsequent to initial uptake from the medium, i.e., by increasing the turnover rate of the cellular FFA pool. Availability of glucose decreased the oxidation of endogenous lipid radioactivity and the depletion of endogenous lipid ester radioactivity. Most of the radioactivity utilized was derived from phospholipids, and depletion of phospholipid radio-activity was spared when glucose was available. Depletion of cellular total lipid ester also was spared in the presence of glucose. Availability of FFA did not decrease total glucose uptake or its oxidation to CO(2). Glucose utilization by these cells appears not to be regulated by FFA availability in the manner that Randle and coworkers described for muscle.  相似文献   

4.
A simple, rapid, and accurate method was developed for measuring intracellular FFA levels in isolated white adipose cells using sucrose-(14)C or inulin carboxyl-(14)C as nontransportable, nonutilizable markers of the extracellular space. Following incubation, medium and cells were separated by centrifugation and the infranatant medium was removed by aspiration. The volume of medium trapped between cells was determined by measuring the amount of sucrose-(14)C or inulin carboxyl-(14)C retained in the floating packed adipose cells. In this way the FFA content of the adipose cells could be corrected for contamination by FFA bound to extracellular albumin. With this technique the initial events in hormone-activated lipolysis were studied under conditions of maximal and constant rates of triglyceride hydrolysis. The FFA content of isolated adipocytes of fed rats was 0.5 micro mole/g cell lipid. On addition of norepinephrine in the presence of medium albumin, the concentration of intracellular FFA rapidly increased and reached a plateau at a concentration of 2-2.5 micro moles/g cell lipid. In the presence of medium albumin an initial lag in glycerol release occurred and this was attributed to partial hydrolysis of triglyceride with retention of lower glycerides. After 5 min of incubation FFA and glycerol output was constant. In the absence of medium albumin norepinephrine-stimulated lipolysis was reduced more than 90% and extracellular FFA release was not detected. Nevertheless, intracellular FFA accumulation was identical to that seen in the presence of albumin. The data suggest that most of this intracellular pool of FFA is bound to cytoplasmic constituents.  相似文献   

5.
The role of plasma free fatty acids (FFA) in the transport of fatty acids from host tissues to Ehrlich ascites carcinoma in mice was studied. [9,10-(3)H] Palmitate complexed to mouse serum (albumin) was injected either intraperitoneally or intravenously into unanesthetized tumor-bearing mice. The incorporation of radioactivity into tumor extracellular fluid FFA, tumor cell FFA, neutral lipid, phospholipid, water-soluble material in cells and fluid, plasma FFA, host carcass total lipid fatty acids, and water-soluble (i.e., nonlipid) material was measured. In addition, the quantity of fatty acid in each of the above lipid fractions was determined. The data were analyzed by multicompartmental analysis (SAAM) using a digital computer, and fractional rate constants of FA movement within and out of the host-tumor system were calculated. These rate constants and pool size measurements were used to estimate the corresponding fluxes. Although FFA in the tumor's extracellular fluid were replaced rapidly, almost none of the newly formed fluid FFA was derived from plasma FFA. Moreover, the transfer of FFA from the tumor extracellular fluid FFA to plasma FFA was virtually negligible. We suggest that the net amount of FFA required to replace the fluid FFA utilized for tumor energy and growth may be derived from direct transfer of FFA from host tissues to the ascitic fluid and that plasma FFA is not an intermediate in this transport process. The transport of FFA from the host to tumor cell lipids through the tumor extracellular fluid was about 26-fold greater than that required to account for net lipid accumulation during growth.  相似文献   

6.
Studies have been conducted on the uptake and metabolism of unesterified oleic acid and lipoprotein triacylglycerol by the perfused rat heart, and of oleic acid, free glycerol and lipoprotein triacylglycerol by rat cardiac myocytes. The perfused heart efficiently extracted and metabolized unesterified fatty acid and the fatty acid released during lipolysis of the recirculating triacylglycerol. The released glyceride glycerol, however, was largely accumulated in the perfusion media. Cardiac myocytes also extracted and rapidly metabolized unesterified fatty acid. As with the intact heart, free glycerol was poorly utilized by cardiac myocytes. Although the cells appeared to extract a small amount of available extracellular triacylglycerol presented as very low density lipoprotein, this was shown to be unmetabolized, suggesting adsorption rather than surface lipolysis and uptake of the released fatty acid. The data suggest that myocytes are unable to metabolize triacylglycerol fatty acids without prior lipolysis by extracellular (capillary endothelial) lipoprotein lipase.  相似文献   

7.
Uptake of long-chain fatty acid methyl esters by mammalian cells   总被引:8,自引:0,他引:8  
Albumin-bound long-chain fatty acid methyl esters (ME) were taken up and utilized by Ehrlich ascites tumor cells and slices of rat heart, liver, and kidney. Much more ME than albumin was taken up by the tumor cells, indicating that ME dissociated from the carrier protein during their uptake. 70-80% of the radioactivity associated with the cells after 1 min of incubation at 37 degrees C remained as ME. The results of studies with metabolic inhibitors and glucose suggest that uptake of ME is an energy-independent process. Changes in incubation medium pH between 7.8 and 6.5 did not markedly alter uptake of ME. Cells incubated with FFA and methanol did not synthesize ME. These findings indicate that ME are taken up intact, and they suggest that the presence of an anionic carboxyl group is not essential for the binding of a long-chain aliphatic hydrocarbon to a mammalian cell. When incubation with labeled ME was continued for 1 hr, increasing amounts of radioactivity were recovered in FFA, phospholipids, neutral lipid esters, and CO(2). ME radioactivity associated with the cells after a brief initial incubation was released in the form of ME and FFA when the cells were incubated subsequently in a medium containing albumin. If the second incubation medium contained no albumin, most of the ME radioactivity initially associated with the cells was incorporated into phospholipids, neutral lipid esters, and CO(2). These results suggest that much of the ME which is taken up, is hydrolyzed to FFA, and that the fatty acids derived from ME are available for further metabolism.  相似文献   

8.
Within adipose tissue, free fatty acids liberated by lipolysis may be re-esterified into newly synthesized triacylglycerol. We hypothesized that re-esterification may occur via an extracellular route, such that free fatty acids arising from lipolysis must leave the adipocyte and be taken up again before they can be re-esterified. We simultaneously measured rates of lipolysis, acylglycerol synthesis, and free fatty acid re-esterification in human adipose tissue and isolated adipocytes in vitro, utilizing a dual-isotopic technique. We manipulated incubations to increase mixing of released free fatty acids with the incubation medium. Such manipulations should decrease the probability that released free fatty acids would be taken up and re-esterified. We found that re-esterification was decreased in isolated adipocytes compared to fragments of tissue, in shaken compared to unshaken incubations, and in low adipocyte concentrations compared to high adipocyte concentrations. Rates of acylglycerol synthesis and lipolysis were unaltered by these manipulations, indicating that changes in free fatty acid re-esterification are not secondary to effects on these processes. The results are consistent with an extracellular route for free fatty acid re-esterification. Such a mechanism suggests that adipose tissue blood flow may play an important role in the regulation of free fatty acid release from adipose tissue.  相似文献   

9.
Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC–FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.  相似文献   

10.
Rat fat cells incubated with lipolytic agents released substances to the medium which acted as feedback regulators of cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The feedback regulators were not removed by adenosine deaminase. Dialyzed medium that had previously been incubated with fat cells in the presence of norepinephrine markedly inhibited cyclic AMP accumulation by fresh cells, whereas dialyzed medium from control cells did not inhibit cyclic AMP accumulation. The effects of lipolytic agents could be mimicked by adding dialyzed medium previously incubated with fat cells in the presence of oleic acid. This suggested that free fatty acids were the nondialyzable and adenosine deaminase-insensitive inhibitors of cyclic AMP accumulation released to the medium by fat cells incubated with lipolytic agents. The regulatory function of free fatty acids was related to the molar ratio of fatty acid to albumin. Profound inhibition of both lipolysis and cyclic AMP accumulation was seen as the free fatty acid/albumin ratio exceeded 3. The inhibition of cyclic AMP accumulation by oleate was seen as soon as there was a detectable increase in cyclic AMP due to lipolytic agents. Protein kinase activity (in the presence of cyclic AMP) of the infranatant obtained after centrifugation of fat cell homogenates at 48,000 x g was inhibited by medium from cells incubated with lipolytic agents or added oleate. Adenylate cyclase activity of rat fat cell ghosts was also inhibited by dialyzed or nondialyzed medium that previously had been incubated with lipolytic agents or added fatty acids. The direct addition of oleate markedly inhibited adenylate cyclase activity as the free fatty acid/albumin ratio exceeded 2. These data suggest that the prolonged drop in cyclic AMP accumulation seen during the incubation of rat fat cells with lipolytic agents is due to the inhibition of adenylate cyclase. This occurs when the free fatty acid/albumin ratio exceeds 3.  相似文献   

11.
12.
Inhibition of free fatty acid mobilization by colchicine   总被引:1,自引:0,他引:1  
Segments of epididymal adipose tissue from normal male rats were incubated with micromolar concentrations of colchicine for different periods of time up to 4 hr, and the mobilization of free fatty acids (FFA) was measured during a subsequent reincubation. Although pretreatment with colchicine did not alter basal unstimulated FFA release, mobilization of FFA in the presence of epinephrine or theophylline was reduced. However, neither lipolysis, as judged by glycerol production, nor cyclic AMP accumulation was impaired under the same conditions. To assess the possibility that colchicine might limit production of fatty acids by accelerating the entry and metabolism of glucose into adipocytes, the metabolism of glucose by adipose tissue was studied. Pretreatment with colchicine did not affect uptake of glucose nor its oxidation to CO(2), although colchicine-treated tissues did have slightly more [(14)C]glucose incorporated into the glyceride moiety of triglyceride. When adipose tissues pretreated with colchicine were incubated in an albumin-free medium, no reduction in FFA production by colchicine was observed. Because no FFA release occurs in albumin-free media, this experiment suggests that colchicine-induced inhibition of FFA mobilization results from impaired extrusion of FFA from adipose cells.  相似文献   

13.
The purpose of this study was to determine whether lipoprotein-bound free fatty acid could be utilized by isolated mammalian cells. Ehrlich ascites tumor cells were incubated in vitro with radioactive free fatty acids that were bound to human plasma lipoproteins. Under these conditions, lipoprotein-bound free fatty acids were readily taken up by the cells. After 2 min of incubation with free fatty acids bound to low density lipoproteins, most of the radioactivity that was associated with the cells was in the form of free fatty acids. As the incubation continued, increasing amounts of radioactivity were incorporated into CO(2) and cell lipids, particularly phospholipids. Most of the free fatty acid uptake was the result of fatty acid transfer from low density lipoproteins to the cell, not from irreversible incorporation of the intact free fatty acid-low density lipoprotein complex. Fatty acid uptake increased as the ratio of free fatty acid to low density lipoprotein was raised. When albumin was added to the medium, free fatty acid uptake decreased. A large percentage of the newly incorporated cellular radioactivity was released into the medium if the cells were exposed subsequently to a solution containing albumin. Most of the released radioactivity was in the form of free fatty acid. The results with this experimental model suggest that lipoprotein-bound free fatty acid, like albumin-bound free fatty acid, is readily available for uptake by isolated cells. The mechanism of free fatty acid utilization by the Ehrlich cell is similar when either low density lipoprotein or serum albumin serves as the fatty acid carrier.  相似文献   

14.
The exocyst is an octameric molecular complex that drives vesicle trafficking in adipocytes, a rate-limiting step in insulin-dependent glucose uptake. This study assessed the role of the exocyst complex in regulating free fatty acid (FFA) uptake by adipocytes. Upon differentiating into adipocytes, 3T3-L1 cells acquire the ability to incorporate extracellular FFAs in an insulin-dependent manner. A kinetic assay using fluoresceinated FFA (C12 dodecanoic acid) uptake allows the real-time monitoring of FFA internalization by adipocytes. The insulin-dependent uptake of C12 dodecanoic acid by 3T3-L1 adipocytes is mediated by Akt and phosphatidylinositol 3 (PI3)-kinase. Gene silencing of the exocyst components Exo70 and Sec8 significantly reduced insulin-dependent FFA uptake by adipocytes. Consistent with the roles played by Exo70 and Sec8 in FFA uptake, mCherry-tagged Exo70 and HA-tagged Sec8 partially colocalize with lipid droplets within adipocytes, suggesting their active roles in the development of lipid droplets. Tubulin polymerization was also found to regulate FFA uptake in collaboration with the exocyst complex. This study demonstrates a novel role played by the exocyst complex in the regulation of FFA uptake by adipocytes.  相似文献   

15.
Elevated plasma levels of free fatty acids (FFA) can produce insulin resistance in skeletal muscle tissue and liver and, together with alterations in beta-cell function, this has been referred to as lipotoxicity. This study explores the effects of FFAs on insulin action in rat adipocytes. Cells were incubated 4 or 24 h with or without an unsaturated FFA, oleate or a saturated FFA, palmitate (0.6 and 1.5 mM, respectively). After the culture period, cells were washed and insulin effects on glucose uptake and lipolysis as well as cellular content of insulin signaling proteins (IRS-1, PI3-kinase, PKB and phosphorylated PKB) and the insulin regulated glucose transporter GLUT4 were measured. No significant differences were found in basal or insulin-stimulated glucose uptake in FFA-treated cells compared to control cells, regardless of fatty acid concentration or incubation period. Moreover, there were no significant alterations in the expression of IRS-1, PI3-kinase, PKB and GLUT4 following FFA exposure. Insulin's ability to stimulate PKB phosphorylation was also left intact. Nor did we find any alterations following FFA exposure in basal or cAMP-stimulated lipolysis or in the ability of insulin to inhibit lipolysis. The results indicate that oleate or palmitate does not directly influence insulin action to stimulate glucose uptake and inhibit lipolysis in rat fat cells. Thus, lipotoxicity does not seem to occur in the fat tissue itself.  相似文献   

16.
Intragastric lipolysis may be particularly important for the digestion of milk lipid since milk fat globules are resistant to pancreatic lipase without prior disruption; milk bile salt stimulated lipase (BSSL) may supplement further intestinal hydrolysis. Previous information on gastric lipolysis has been based primarily on in vitro studies using artificial lipid emulsions containing a single component fatty acid and have focused on the preferential release of medium-chain fatty acids. The actual contribution of these enzymes to overall fat digestion in vivo on natural substrates has rarely been studied, however. The neonatal dog is an excellent model in the study of lipid digestion because, like the human, milk lipids are high in long-chain unsaturated fatty acids, milk contains BSSL and gastric lipase is the predominant lipolytic enzyme acting in the stomach. We used a combination of in vivo studies with in vitro incubations to investigate digestion of milk lipid by gastric and milk (BSSL) lipases in the suckling dog. In the first 4 weeks postpartum, 14-41% and 42-60% of milk triacylglycerol was hydrolyzed to primarily diacylglycerol and free fatty acid (FFA) in the first 30 and 60 min in the stomach, respectively. Milk lipid contained high levels (63%) of long-chain unsaturated fatty acids, which were preferentially released as FFA during in vivo gastric lipolysis, consistent with the actions and stereospecificity of gastric lipase. While levels of hydrolysis in gastric aspirates were significantly different (by age and time in stomach) at the start of in vitro studies, total hydrolysis in all incubation systems plateaued at about 65%, suggesting product inhibition by the long-chain FFA, but to a much lesser degree than previously expected from in vitro studies. The magnitude of in vivo intragastric lipolysis was 3- to 6-times greater than that predicted by in vitro assays using either milk lipid or labeled emulsion as substrate, respectively. Prior exposure to intragastric lipolysis resulted in 30% hydrolysis by BSSL compared to 5% hydrolysis without prior exposure. We suggest that previous in vitro studies have largely underestimated the actual degree of intragastric lipolysis that can occur and its activity on long-chain fatty acids; this study indicates the importance of the combined mechanisms of gastric lipase and BSSL to fat digestion in the suckling neonate.  相似文献   

17.
Epinephrine, norepinephrine, ACTH, and dibutyryl 3',5'-cyclic AMP reduced adipocyte ATP levels during 60 min incubation; glucose displayed a protective effect. The reduction in adipocyte ATP levels could not be attributed solely to: a direct hormone effect, deficiency in metabolic substrate, activation of adenyl cyclase with ATP consumption, loss of adenine nucleotide from the cell or loss of cells during incubation, lipolytic rate per se, or extracellular accumulation of FFA or glycerol. To determine whether intracellular FFA accumulation was a causative factor, intracellular FFA levels were measured during hormone-stimulated lipolysis. This was accomplished by using sucrose-U-(14)C as a marker for the extracellular space to correct for contamination of cells by extracellular albumin-bound FFA. These experiments showed that the fall in adipocyte ATP correlated with FFA saturation of medium albumin and progressive accumulation of FFA within the adipocyte. Furthermore, the protective effect of glucose noted above was associated with a marked reduction in intracellular FFA as compared to the extracellular FFA pool. On the basis of these studies, combined with those in the literature, it is concluded that in vitro effects of lipolytic agents on adipocyte ATP levels are the net result of imparied ATP synthesis (uncoupled oxidative phosphorylation) in the face of normal or augmented ATP consumption.  相似文献   

18.
Glucose utilization was studied in isolated fat cells prepared from rat adipose tissue which had been cultured for 18 hr in TC 199 medium. When 1% bovine serum albumin (BSA) was in the culture medium, basal rates of (14)CO(2) and [(14)C]triglyceride production from [1-(14)C]glucose were markedly depressed and there was no effect of insulin. With 4% BSA, basal (14)CO(2) production was the same as in cells prepared from fresh tissue and basal triglyceride production was greatly increased. Insulin effect on these cells was minimal. One-minute uptake of [(14)C]2-deoxyglucose was stimulated by 800-1000% in fresh cells and 300-500% in cells cultured with either 1% or 4% BSA. Oxidation of [U-(14)C]glucose showed a much smaller impairment in cultured cells than for [1-(14)C]glucose, suggesting that the pentose phosphate shunt was more severely impaired than glycolysis. Glyceride-glycerol production was increased in cultured cells relative to preculture (fresh) cells. There was no effect of insulin in the culture medium in any of these systems. Rates of free fatty acid and glycerol release were markedly increased in cultured cells, especially when insulin was present in the culture medium. The acute antilipolytic effect of insulin was retained, so that insulin in the test incubation decreased lipolysis by 40-80%. Nevertheless, cell-associated fatty acids were increased in cultured cells and FFA/albumin ratios in the medium often reached potentially toxic levels. The reduction in pentose phosphate shunt activity, lipogenesis, and insulin effect resembles other models of insulin insensitivity. The impaired metabolism is probably due to an intracellular defect. A possible toxic role of either intracellular or extracellular fatty acids cannot be excluded. This system should be a useful model in which to study the cellular mechanisms of insulin insensitivity in adipocytes.-Bernstein, R. S. Insulin insensitivity and altered glucose utilization in cultured rat adipose tissue.  相似文献   

19.
The effects of acylation-stimulating protein (ASP) and insulin on free fatty acid (FFA) release from isolated human fat cells and the signal transduction pathways to induce these effects were studied. ASP and insulin inhibited basal and norepinephrine-induced FFA release by stimulating fractional FFA re-esterification (both to the same extent) and by inhibiting FFA produced during lipolysis (ASP to a lesser extent than insulin). Protein kinase C inhibition influenced none of the effects of ASP or insulin. Phosphatidylinositol 3-kinase inhibition counteracted the effects of insulin but not of ASP. Phosphodiesterase 3 (PDE3) activity was stimulated by ASP and insulin, whereas PDE4 activity was slightly increased by ASP only. Selective PDE3 inhibition reversed the effects of both ASP and insulin on fractional FFA re-esterification and lipolysis. Selective PDE4 inhibition slightly counteracted the ASP but not the effect of insulin on fractional FFA re-esterification and did not prevent the action of ASP or insulin on lipolysis. Thus, ASP and insulin play a major role in regulating FFA release from fat cells as follows: insulin by stimulating fractional FFA re-esterification and inhibiting lipolysis and ASP mainly by stimulating fractional FFA re-esterification. For both ASP and insulin these effects on FFA release are mediated by PDE3, and for ASP PDE4 might also be involved. The signaling pathway preceding PDE is not known for ASP but involves phosphatidylinositol 3-kinase for insulin.  相似文献   

20.
The amount of fatty acid release by a fat cell homogenate without pretreatment with epinephrine was found to be slightly more than that released from fat cells by epinephrine, suggesting that fat cells contain high lipolytic activity even in the absence of lipolytic agents. Fat cells contain high hormone-sensitive lipase activity (1383 mumole free fatty acids/g/hr) in the absence of epinephrine, and addition of epinephrine to the cells did not increase the activity, significantly. Like epinephrine, DBcAMP and/or theophylline also elicited marked release of glycerol from fat cells without activating the hormone-sensitive lipase activity. However, although fat cells contain a large amount of hormone-sensitive lipase, lipolysis was negligible in the absence of these lipolytic agents. These results suggest that lipolytic agents such as epinephrine, DBcAMP, and theophylline induce lipolysis in fat cells through some mechanism other than activation of hormone-sensitive lipase and that in the absence of lipolytic agents, some system in fat cells inhibits lipolysis of endogenous lipid droplets by hormone-sensitive lipase. The lipid droplets in fat cells consist mainly of triglyceride with phospholipids, cholesterol, carbohydrate, and protein as minor constituents. The phospholipid fraction was found to consist of 75% phosphatidylcholine and 25% phosphatidylethanolamine. Of the minor constituents of endogenous lipid droplets, only phosphatidylcholine strongly inhibited hormone-sensitive lipase activity in a [3H]triolein emulsion. These results suggest that phosphatidylcholine in endogenous lipid droplets may be responsible for inhibition of hormone-sensitive lipase. Then, a cell-free system was established in which epinephrine, DBcAMP, and theophylline stimulated lipolysis of endogenous lipid droplets from fat cells by lipase solution. In this system, these lipolytic agents did not induce lipolysis in the absence of added lipase. Lipolysis in the mixture of the endogenous lipid droplets and lipase solution was accelerated by phospholipase C with concomitant loss of epinephrine-induced lipolysis. After pretreatment of the endogenous lipid droplets with phospholipase C, these lipolytic agents no longer induced lipolysis. Pretreatment of the endogenous lipid droplets with phospholipase C reduced their phospholipid content with the formation of phosphorylcholine, but did not affect their triglyceride and cholesterol contents. Treatment of the endogenous lipid droplets with phospholipase D did not affect lipolysis in the cell-free system. These results suggest that phosphatidylcholine in the endogenous lipid droplets may inhibit their lipolysis by hormone-sensitive lipase in fat cells and also be involved in the mechanisms of the stimulatory effects of epinephrine, DBcAMP, and theophylline on lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号