首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated leukocyte involvement in uterine hypoperfusion and intrauterine fetal growth retardation (IUGR) induced by ischemia-reperfusion (I/R) in Sprague-Dawley rats. On day 17 of gestation, leukocyte accumulation in the uterus and placenta subjected to 30 min of ischemia, followed by reperfusion, was assessed by measuring myeloperoxidase (MPO) activity. Uterine MPO activity was significantly higher after 1 h of reperfusion than it was before ischemia (P < 0.05), without any increase in placental MPO activity. Immunohistochemical staining showed leukocyte accumulation in the uterus subjected to I/R. The effects of treatment with monoclonal antibodies against CD11a (WT1) and CD18 (WT3) at a dose of 0.8 mg/kg on uterine blood flow and IUGR were investigated. Laser-Doppler flowmetry demonstrated that uterine hypoperfusion at 2 h after ischemia (blood flow, -51.7 +/- 1.2%; P < 0.01) was inhibited by WT1 and WT3 treatment. I/R-induced IUGR at full term (P < 0.05 vs. nonischemic horn) was prevented by WT1 and WT3 treatment on day 17. These results indicate that leukocyte accumulation may play an important role in the pathogenesis of uterine hypoperfusion and IUGR induced by I/R in pregnant rats.  相似文献   

2.
This study was designed to assess the effect of a peptidoleukotriene receptor antagonist, SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 10,4353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptido-leukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 +/- 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 +/- 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 +/- 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 +/- 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 10,4353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion had no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p greater than 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

3.
We investigated the effects of tyrophostin AG 556, a tyrosine kinase inhibitor, on the phenomenon of leukocyte accumulation during ischaemia and reperfusion of the myocardium. Male anaesthetized rats were subjected to total occlusion (45 min) of the left main coronary artery followed by 5 h reperfusion (MI/R). Sham myocardial ischaemia-reperfusion rats (Sham MI/R) were used as controls. Myocardial necrosis, myocardial myeloperoxidase activity (MPO), serum creatinine phosphokinase activity (CPK) serum Tumor Necrosis Factor (TNF-alpha) and Interleukin 6 (IL-6), cardiac intercellular adhesion molecule-1 (ICAM-1) and TNF-alpha expression and myocardial contractility (left ventricle dP/dt(max)) were evaluated. Myocardial ischaemia plus reperfusion in untreated rats produced marked myocardial necrosis, increased serum CPK activity (196.5 +/- 19 U/100 ml, at the end of reperfusion) and myeloperoxidase activity (MPO, a marker of leukocyte accumulation) both in the area-at-risk (4.5 +/- 0.5 U/g/tissue) and in necrotic area (8.2 +/- 1.2 U/g/tissue), reduced myocardial contractility (1,706 +/- 52 mmHg/s, at the end of reperfusion) and induced a marked increase in the serum levels of TNF-alpha (1,950 +/- 97 pg/ml, at 1 h of reperfusion) and IL-6 (998 +/- 16 U/ml, at the end of reperfusion). Finally, myocardial ischaemia-reperfusion injury also increased cardiac mRNA for TNF-alpha and ICAM-1 in the myocardium-at risk. Tyrphostin AG 556 (0.5, 1 and 2 mg/kg subcutaneously 5 min after the onset of reperfusion) lowered myocardial necrosis and myeloperoxidase activity in the area-at-risk (1.5 +/- 0.2 U/g/tissue, following the highest dose) and in necrotic area (2.9 +/- 0.3 U/g/tissue following the highest dose), decreased serum CPK activity (96 +/- 9 U/100 ml, at the end of reperfusion), lowered serum TNF-alpha and IL-6, increased myocardial contractility (2,096 +/- 88 mmHg s, at the end of reperfusion) and reduced cardiac mRNA levels for TNF-alpha and ICAM-1. The present data suggest that tyrosine kinase inhibitors protect against myocardial ischaemia-reperfusion injury by reducing leukocyte accumulation to the ischaemic myocardium.  相似文献   

4.
It is well established that inhibition of glycogen synthase kinase (GSK)-3β in the young adult myocardium protects against ischemia-reperfusion (I/R) injury through inhibition of mitochondrial permeability transition pore (mPTP) opening. Here, we investigated age-associated differences in the ability of GSK-3β inhibitor [SB-216763 (SB)] to protect the heart and to modulate mPTP opening during I/R injury. Fischer 344 male rats were assigned from their respective young or old age groups. Animals were subjected to 30 min ischemia following 120 min reperfusion to determine myocardial infarction (MI) size in vivo. Ischemic tissues were collected 10 min after reperfusion for nicotinamide adenine dinucleotide (NAD(+)) measurements and immunoblotting. In parallel experiments, ventricular myocytes isolated from young or old rats were exposed to oxidative stress through generation of reactive oxygen species (ROS), and mPTP opening times were measured by using confocal microscopy. Our results showed that SB decreased MI in young SB-treated rats compared with young untreated I/R animals, whereas SB failed to significantly affect MI in the old animals. SB also significantly increased GSK-3β phosphorylation in young rats, but phosphorylation levels were already highly elevated in old control groups. There were no significant differences observed between SB-treated and untreated old animals. NAD(+) levels were better maintained in young SB-treated animals compared with the young untreated group during I/R, but this relative improvement was not observed in old animals. SB also significantly prolonged the time to mPTP opening induced by ROS in young cardiomyocytes, but not in aged cardiomyocytes. These results demonstrate that this GSK-3β inhibitor fails to protect the aged myocardium in response to I/R injury or prevent mPTP opening following a rise in ROS and suggest that healthy aging alters mPTP regulation by GSK-3β.  相似文献   

5.
This study was designed to assess the effect of a peptidol eukotriene receptor antagonist. SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 104353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptidol eukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 ± 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 ± 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 ± 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 ± 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 105353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion and no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p > 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/ reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

6.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

7.
Reperfusion of the ischemic myocardium is associated with a cytokine cascade that reflects a cellular response to injury. We studied this cascade in the mouse and found that acute surgical trauma in sham-operated animals obscured early changes in cytokine induction that occur during myocardial ischemia-reperfusion (MI/R). Therefore, we utilized a new implantable device that allows occlusion and reperfusion of the left anterior descending coronary artery in a closed-chest mouse at any time after instrumentation. Induction of interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha mRNA in the whole heart was examined by RNase protection assay and quantitated by Phosphor- Imager. At 3 h after instrumentation, levels of IL-6 mRNA in sham-operated animals increased above those of control naive hearts, whereas this increase did not occur until after 1 day for TNF-alpha mRNA. The surgical trauma led to exaggeration of I/R cytokine induction with greater variance in response. At 3 days and 1 wk after instrumentation, levels of both IL-6 and TNF-alpha mRNA in sham-operated animals were comparable to those of naive hearts and induction responses in I/R were much less variant. We also found that 1 h of ischemia and 2 h of reperfusion at all time points of recovery (i.e., 3 h and 1, 3, and 7 days after instrumentation) led to a significant increase in IL-6 and TNF-alpha mRNA levels. In addition, 3 h of permanent occlusion, which did not induce any mRNA increase after 1 wk postinstrumentation, caused marked upregulation of IL-6 mRNA in an acutely prepared animal. This study of early cytokine responses evoked by MI/R highlights the need for dissipation of acute surgical trauma by using a chronic, closed-chest mouse preparation.  相似文献   

8.

Background

A large number of experimental studies using young adult subjects have shown that ginseng (Panax ginseng C.A. Meyer) protects against ischemia heart disease. However, ginseng has not been explored for its anti-I/R effect and mechanism of action in the aged myocardium. The present study was designed to evaluate the effects of the long-term consumption of ginseng extract on myocardial I/R in an in vivo rat model and explore the potential underlying mechanism.

Methods and Results

Young (6-mo-old) and intermediate-aged (18-mo-old) rats were gavaged with either standardized ginseng extract (RSE) at 80 mg/kg or vehicle for 90 days. The rats were sacrificed after LAD coronary artery ligation was performed to induce 30 min of ischemia, followed by 90 min of reperfusion. The myocardial infarct size was measured. Left ventricular function was evaluated using pressure-volume loops. The levels of survival, apoptotic and longevity protein expression were assessed through Western blot analysis. Myocardial pathology was detected through H&E or Masson’s trichrome staining. We observed higher infarct expansion with impairment in the LV functional parameters, such as LVSP and LVEDP, in aged rats compared with young rats. Enhanced Akt phosphorylation and eNOS expression in RSE-treated aged hearts were accompanied with reduced infarct size, improved cardiac performance, and inducted survival signals. In contrast, p-Erk and caspase 7 were significantly downregulated in aged rats, suggesting that cardiomyocyte apoptosis was suppressed after RSE treatment. RSE also inhibited caspase-3/7 activation and decreased Bax/Bcl-2 ratio. Consistent with the results of apoptosis, Sirt1 and Sirt3 were significantly increased in the RSE-treated aged heart compared with vehicle-treated I/R, suggesting that the anti-aging effect was correlated with the anti-apoptotic activity of RSE.

Conclusion

These findings suggest that the long-term consumption of ginseng extract reduced the susceptibility of intermediate-aged hearts to acute ischemia reperfusion injury in rats. These effects might be mediated through the activation of Akt/eNOS, suppression of Erk/caspase 7 and upregulation of Sirt1 and Sirt3 in intermediate-aged rats.  相似文献   

9.
Mesenteric ischemia-reperfusion injury is a serious complication of shock. Because activation of nuclear factor-kappaB (NF-kappaB) has been implicated in this process, we treated rats with vehicle or the IkappaB-alpha inhibitor BAY 11-7085 (25 mg/kg ip) 1 h before mesenteric ischemia-reperfusion (45 min of ischemia followed by reperfusion at 30 min or 6 h) and examined the ileal injury response. Vehicle-treated rats subjected to ischemia-reperfusion exhibited severe mucosal injury, increased myeloperoxidase (MPO) activity, increased expression of interleukin-6 and intercellular adhesion molecule 1 protein, and a biphasic peak of NF-kappaB DNA-binding activity during the 30-min and 6-h reperfusion courses. In contrast, BAY 11-7085-pretreated rats subjected to ischemia-reperfusion exhibited less histological injury and less interleukin-6 and intercellular adhesion molecule 1 protein expression at 30 min of reperfusion but more histological injury at 6 h of reperfusion than vehicle-treated rats subjected to ischemia-reperfusion. Studies with phosphorylation site-specific antibodies demonstrated that IkappaB-alpha phosphorylation at Ser(32),Ser(36) was induced at 30 min of reperfusion, whereas tyrosine phosphorylation of IkappaB-alpha was induced at 6 h of reperfusion. BAY 11-7085 inhibited the former, but not the latter, phosphorylation pathway, whereas alpha-melanocyte-stimulating hormone, which is effective in limiting late ischemia-reperfusion injury to the intestine, inhibited tyrosine phosphorylation of IkappaB-alpha. Thus NF-kappaB appears to play an important role in the generation and resolution of intestinal ischemia-reperfusion injury through different activation pathways.  相似文献   

10.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, has recently been implicated as a regulator of cellular proliferation and inflammatory responses. The aim of the present study was to investigate the effects of pioglitazone on ischemia-reperfusion (I/R)-induced gastric mucosal injury in rats. Gastric ischemia was induced for 30 min by applying a small vascular clamp to the celiac artery and reperfusion was produced by removal of the clamp in male Sprague-Dawley rats treated with and without pioglitazone. Pioglitazone was given to the rats intraperitoneally 2 h before the vascular clamping. The area of gastric mucosal erosion (erosion index) significantly increased from mean basal levels after 60 min of reperfusion. This erosion index was significantly inhibited by pretreatment with pioglitazone in a dose-dependent manner. The concentration of thiobarbituric acid reactive substances (TBARS) and myeloperoxidase (MPO) activity in the gastric mucosa were both significantly increased after I/R, and pretreatment with pioglitazone significantly reduced these increases. The contents of both mucosal TNF-alpha and CINC-2beta in the I/R group were significantly increased compared with the levels in the sham-operated group. These increases in TNF-alpha and CINC-2beta were significantly inhibited by pretreatment with pioglitazone at a dose of 10 mg/kg. The results of the present study indicate that pioglitazone inhibited lipid peroxidation and reduced development of the gastric mucosal inflammation induced by I/R in rats. This investigation suggests that pioglitazone has potential as a new therapeutic agent for reperfusion injury.  相似文献   

11.
Ischemic preconditioning (IP) reduces infarct size in young animals; however, its impact on aging is underinvestigated. The effect of variations in IP stimuli was studied in young, middle-aged, and aged rat hearts. Isolated hearts underwent 35 min of regional ischemia and 120 min of reperfusion. Hearts with IP were subjected to either one ischemia-reperfusion cycle (5 min of ischemia and 5 min of reperfusion per cycle) or three successive cycles before 35 min of regional ischemia. Additional studies investigated the effects of pharmacological preconditioning in aged hearts using the adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine, the protein kinase C analog 1,2-dioctanoyl-sn-glycerol, and the mitochondrial ATP-sensitive potassium (K(ATP))-channel opener diazoxide. Infarct sizes indicated that the aged rat heart could not be preconditioned via ischemic or pharmacological means. The middle-aged rat heart had a blunted IP response compared with the young adult (only an increased IP stimulus caused a significant reduction in infarct size). These results suggest that there are defects within the IP signaling cascade of the aged heart. Clinical relevance is important if we are to use any IP-like mimetics to the benefit of an aging population.  相似文献   

12.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

13.
In vivo administration of L-arginine at different time points during the course of myocardialischemia and reperfusion(MI/R)has been shown to differentially regulate postischemic apoptosis.Cardiacfunction is one of the most important indexes used to judge the degree of myocardial injury.The presentstudy attempted to determine whether in vivo administration of L-arginine at different stages of MI/R has adiverse influence on cardiac function of ischemic reperfused hearts and,if so,to investigate the mechanismsinvolved.Male adult rats were subjected to 30 min myocardial ischemia followed by 5 h reperfusion.Anintravenous L-arginine bolus was given either 10 min before and 50 min after reperfusion(early treatment)or3 h and 4 h after reperfusion(late treatment).Early treatment with L-arginine markedly increased the leftventricular systolic pressure(LVSP)and dP/dt_(max),and decreased myocardial nitrotyrosine content.In strictcontrast,late treatment with L-arginine resulted in a significant decrease in LVSP and dP/dt_(max)from 4 h to 5h after reperfusion,and increase in toxic peroxynitrite formation as measured by nitrotyrosine.These resultssuggest that the administration of L-arginine at different time points during the course of MI/R leads todiverse effects on cardiac dysfunction.Early supplementation decreased the nitrative stress and improvedleft ventricular function.However,late treatment with L-arginine increased the formation of peroxynitriteand aggravated cardiac functional injury.  相似文献   

14.
Both inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and the cardiac protective peptide adrenomedullin (AM) are increased in cardiac tissues and plasma in patients with myocardial infarction (MI) and chronic heart failure. Recently they have been increasingly recognized as important factors in the pathophysiology of MI and resultant congestive heart failure. Compared with sham-operated spontaneously hypertensive rats (SHR), we investigated myocardial immunoreactivity of TNF-alpha and AM and also their mutual relations in vivo in SHR+MI. Residual myocardial depression after MI was studied also in isolated perfused hearts. In chronic experiments, 24 and 48 h after permanent ligation of the descending anterior branch of the left coronary artery, we examined hemodynamics, plasma and myocardial peptide levels. Left ventricular function was assessed in isolated perfused hearts subjected to "global ischemia and reperfusion" and after induction of "calcium paradox". Circulating and myocardial TNF-alpha concentrations increased early after MI in SHR. Studies with global ischemia and calcium paradox in isolated heart showed early myocardial depression and calcium-dependent gradual increase of left-ventricular end-diastolic pressure. In the SHR+MI myocardial AM concentrations were increased 9- and 49-fold after respective 24 h and culminated 48 h following MI. Circulating and myocardial AM was increased in SHR+MI in association with TNFalpha-induced myocardial depression. The both studied cardiac parameters displayed the beneficial effect of the enhanced myocardial AM concentration.  相似文献   

15.
16.
Aim of this work was to study the efficacy of procyanidins from Vitis vinifera seeds, a standardized mixture of polyphenol antioxidants, on cardiac mechanics following ischemia/reperfusion stunning in the rat, after 3 weeks supplementation. Young and aged male rats were fed a diet enriched with procyanidins complexed (1:3 w/w) with soybean lecithin (2.4%); control animals (CTR-young and CTR-aged) received an equal amount of lecithin and 2 additional groups of animals the standard diet. At the end of the treatment, the total plasma antioxidant defense (TRAP), vitamin E, ascorbic acid and uric acid were determined in plasma and the hearts from all groups of animals subjected to moderate ischemia (flow reduction to 1 ml/min for 20 min) and reperfusion (15 ml/min for 30 min). In both young and aged rats supplemented with procyanidins the recovery of left ventricular developed pressure (LVDP) at the end of reperfusion was 93% (p < 0.01) and 74% (p < 0.01) of the preischemic values and the values of coronary perfusion pressure (CPP) were maintained close to those of the preischemic period. Also creatine kinase (CK) outflow was restrained to baseline levels, while a 2-fold increase in prostacyclin (6-keto-PGF1alpha) in the perfusate from hearts of young and aged rats was elicited during both ischemia and reperfusion. In parallel, procyanidins significantly increased the total antioxidant plasma capacity (by 40% in young and by 30% in aged rats) and the plasma levels of ascorbic acid, while tend to reduce vitamin E levels; no significant differences were observed in uric acid levels. The results of this study demonstrate that procyanidins supplementation in the rat (young and aged) makes the heart less susceptible to ischemia/reperfusion damage and that this is positively associated to an increase in plasma antioxidant activity.  相似文献   

17.
目的:比较异丙酚和氯胺酮对大鼠离体缺血再灌注损伤心肌脂质过氧化的影响。方法:成年Wistar大鼠18只,雌雄不拘。体重240-300g,随机分为3组(T1=6):心肌缺血再灌注损伤组(I/R组),异丙酚组(P组),氯胺酮组(K组)。采用Langendorff灌装置建立离体心脏缺血再灌注模型,将心脏连接至Langendorff逆灌装置,3组均以K-H液平衡灌注10min后,再分别以K.H液、含30μmol/L。异丙酚的K-H液、含10μmol-L-1氯胺酮的K-H液灌注10min,然后全心停灌25min,再分别以停灌前相同的灌注液恢复灌注30min。留取冠脉流出液测定总LDH活性;灌注末取左室心肌组织置于2.5%的戊二醛固定,观察心肌的超微结构;心尖部心肌组织留待检测8-异前列腺素和SOD活性。结果:与I/R组比较,P组8-异前列腺素含量降低,SOD活性升高,LDH活性降低(P〈0.05);K组8-异前列腺素含量,SOD及LDH活性均无统计学意义(P〉0.05);与P组比较,K组8-异前列腺素含量升高,SOD及LDH活性降低(P〈0.05);P组心肌超微结构损伤较m组和K组也明显改善。结论:异丙酚可显著减轻心肌缺血再灌注损伤大鼠的脂质过氧化和心肌缺血再灌注损伤,而氯胺酮没有抗心肌缺血再灌注损伤心肌脂质过氧化的作用。  相似文献   

18.
Splanchnic ischemia-reperfusion (I/R) causes tissue hypoxia that triggers local and systemic microcirculatory inflammatory responses. We evaluated the effects of hyperoxia in I/R induced by 40-min superior mesenteric artery (SMA) occlusion and 120-min reperfusion in four groups of rats: 1) control (anesthesia only), 2) sham operated (all surgical procedures without vascular occlusion; air ventilation), 3) SMA I/R and air, 4) SMA I/R and 100% oxygen ventilation started 10 min before reperfusion. Leukocyte rolling and adhesion in mesenteric microvessels, pulmonary microvascular blood flow velocity (BFV), and macromolecular (FITC-albumin) flux into lungs were monitored by intravital videomicroscopy. We also determined pulmonary leukocyte infiltration. SMA I/R caused marked decreases in mean arterial blood pressure (MABP) and blood flow to the splanchnic and hindquarters vascular beds and pulmonary BFV and shear rates, followed by extensive increase in leukocyte rolling and adhesion and plugging of >50% of the mesenteric microvasculature. SMA I/R also caused marked increase in pulmonary sequestration of leukocytes and macromolecular leak with concomitant decrease in circulating leukocytes. Inhalation of 100% oxygen maintained MABP at significantly higher values (P < 0.001) but did not change regional blood flows. Oxygen therapy attenuated the increase in mesenteric leukocyte rolling and adherence (P < 0.0001) and maintained microvascular patency at values not significantly different from sham-operated animals. Hyperoxia also attenuated the decrease in pulmonary capillary BFV and shear rates, reduced leukocyte infiltration in the lungs (P < 0.001), and prevented the increase in pulmonary macromolecular leak (P < 0.001), maintaining it at values not different from sham-operated animals. The data suggest that beneficial effects of normobaric hyperoxia in splanchnic I/R are mediated by attenuation of both local and remote inflammatory microvascular responses.  相似文献   

19.
In the present study, we tested the effects of long-term estrogen replacement treatment on myocardial ischemia-reperfusion injury and on the cardioprotection of ischemic preconditioning in isolated hearts from ovariectomized rats. Ovariectomized rats were treated with 17beta-estradiol (30 micro g/kg/d, s.c.) for 12 weeks. Isolated rat hearts were perfused in the Langendorff mode. Heart rate, coronary flow, left ventricular pressure and its first derivative (+/-LVdp/dtmax) were recorded. Fifteen-min global ischemia and 30-min reperfusion caused a significant decrease of cardiac mechanical function, which were not affected by ovariectomy or estrogen replacement treatment. The isolated hearts in all groups could be preconditioned, and the cardioprotection afforded by preconditioning in the sham-operated rats was greater compared with ovariectomized rats with or without estrogen treatment. These results suggest that long-term estrogen replacement treatment exerts no effect on the inhibition of mechanical function after ischemia-reperfusion, and this study also suggests that estrogen does not affect ischemic preconditioning in isolated hearts of ovariectomized rats.  相似文献   

20.
Ischemic tolerance decreases with aging, and the cardioprotective effect of ischemic preconditioning (IPC) is impaired in middle-aged animals. We have demonstrated that short-term caloric restriction (CR) improves myocardial ischemic tolerance in young and old animals via the activation of adiponectin-AMP-activated protein kinase (AMPK)-mediated signaling. However, it is unknown whether prolonged CR confers cardioprotection in a similar manner. Furthermore, little is known regarding the myocardial expression of silent information regulator 1 (Sirt1; which reportedly mediates various aspects of the CR response) with prolonged CR. Thus, 6-mo-old male Fischer-344 rats were randomly divided into ad libitum (AL) and CR groups. Six months later, isolated perfused hearts were subjected to 25 min of global ischemia followed by 120 min of reperfusion with or without IPC. CR improved the recovery of left ventricular function and reduced infarct size after ischemia-reperfusion and restored the IPC effect. Serum adiponectin levels increased, but myocardial levels of total and phosphorylated AMPK did not change with prolonged CR. Total levels of Sirt1 did not change with CR; however, in the nuclear fraction, CR significantly increased Sirt1 and decreased acetyl-histone H3. Eleven rats from each group were given N-nitro-l-arginine methyl ester in their drinking water for 4 wk before death. In these hearts, chronic inhibition of nitric oxide synthase prevented the increase in nuclear Sirt1 content by CR and abrogated CR-induced cardioprotection. These results demonstrate that 1) prolonged CR improves myocardial ischemic tolerance and restores the IPC effect in middle-aged rats and 2) CR-induced cardioprotection is associated with a nitric oxide-dependent increase in nuclear Sirt1 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号