首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyadenylation in animal mitochondria is very unique. Unlike other systems, polyadenylation is needed to generate UAA stop codons that are not encoded in mitochondrial (mt) DNA. In some cases, polyadenylation is required for the mt tRNA maturation by editing of its 3' termini. Furthermore, recent studies on human mt poly(A) polymerase (PAP) and PNPase provide new insights and questions for the regulatory mechanism and functional role of polyadenylation in human mitochondria.  相似文献   

2.
卵胞质移植的研究进展   总被引:3,自引:1,他引:2  
李军锋  张家骅 《遗传》2004,26(3):373-376
许多研究表明,线粒体对卵母细胞的受精和胚胎发育有显著影响,卵胞质中线粒体DNA含量和ATP含量的减少,以及线粒体DNA缺失均能降低卵母细胞的受精和胚胎发育,是老龄妇女和老龄动物生育率下降的重要原因之一。卵胞质移植技术能有效改善老龄卵母细胞的受精能力和早期胚胎的发育能力,在人类已有健康后代出生,它已成为人类辅助生殖生物技术和动物克隆研究的新热点。但是,卵胞质转移也可能会导致线粒体DNA异质,即供体和受体的线粒体DNA同时存在于后代体内。目前,人们对于转入的异质卵胞质中对胚胎的发生和发育造成影响的因素并不完全了解。通过卵胞质移植研究概况、卵胞质与受精和胚胎发育、异种线粒体DNA遗传方式和卵胞质转移遗传物质的检测4个方面对卵胞质移植技术进行讨论。  相似文献   

3.
Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA) have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.  相似文献   

4.
Zhou Q  Li H  Xue D 《Cell research》2011,21(12):1662-1669
In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell biological analyses indicate that in wild-type animals paternal mitochondria and mtDNA are destroyed within two hours after fertilization. In animals with compromised lysosomes, paternal mitochondria persist until late embryonic stages. Therefore, the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization. Our study indicates that C. elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.  相似文献   

5.
6.
7.
Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch-binding and recognition steps.  相似文献   

8.
Oxidative damage to mitochondrial DNA has been implicated in human degenerative diseases and aging. Although removal of oxidative lesions from mitochondrial DNA occurs, the responsible DNA repair enzymes are poorly understood. By expressing the epitope-tagged proteins in COS-7 cells, we examined subcellular localizations of gene products of human DNA glycosylases: hOGG1, hMYH and hNTH1. A gene encoding for hOGG1 which excises 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA generates four isoforms by alternative splicing (types 1a, 1b, 1c and 2). Three tagged isoforms (types 1b, 1c and 2) were localized in the mitochondria. Type 1a protein, which exclusively contains a putative nuclear localization signal, was sorted to the nucleus and lesser amount to the mitochondria. hMYH, a human homolog gene product of Escherichia coli mutY was mainly transported into the mitochondria. hNTH1 protein excising several pyrimidine lesions was transported into both the nucleus and mitochondria. In contrast to the three DNA glycosylases, translocation of the human major AP endonuclease (hAPE) into the mitochondria was hardly observed in COS-7 cells. These results suggest that the previously observed removal of oxidative base lesions in mitochondrial DNA is initiated by the above DNA glycosylases.  相似文献   

9.
Sargsyan O 《PloS one》2012,7(5):e37588
Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This paper develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction with constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50,000 or greater in contrast to 10,000, and the estimates of the recent homogenization events are agree with the "Out of Africa" hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. The results show that significant discrepancies can exist between the estimates.  相似文献   

10.
Allen JF  Allen CA 《IUBMB life》1999,48(4):369-372
Cloned sheep have recently been discovered to have an unexpectedly advanced biological age. We propose that the explanation is a simple consequence of inheritance of acquired, free radical-induced cellular damage with somatic mitochondria that contribute to the mitochondrial population of cloned cells but not to zygotes produced by fertilization in normal sexual reproduction. Each increment of ageing in cloning experiments is therefore predicted to be maternally inherited. The hypothesis suggests practical ways of decreasing the effect. The hypothesis is itself a prediction of the recent proposal that mitochondria of the female germ line function primarily as genetic templates.  相似文献   

11.
In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.  相似文献   

12.
Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete, irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1–2 h after fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization, mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis in brown algae.  相似文献   

13.
14.
15.
Polymerase delta interacting protein 38 (PDIP38) was identified as a human DNA polymerase (pol) delta interacting protein through a direct interaction with p50, the small subunit of human pol delta. PDIP38 was also found to interact with proliferating cell nuclear antigen, which suggested that it might play a role in vivo in the processes of DNA replication and DNA repair in the nucleus. In order to characterize further this novel protein, we have examined its subcellular localization by the use of immunochemical and cellular fractionation techniques. These studies show that PDIP38 is a novel mitochondrial protein and is localized mainly to the mitochondria. PDIP38 was shown to possess a functional mitochondrial targeting sequence that is located within the first 35 N-terminal amino acid residues. The mature PDIP38 protein is about 50 amino acid residues smaller than the full-length precursor PDIP38 protein, consistent with it being processed by cleavage of the mitochondrial targeting sequence during entry into the mitochondria. His-tagged mature PDIP38 inhibited pol delta activity in vitro and interacted with human papillomavirus 16 E7 oncoprotein, suggesting that PDIP38 might play a role in the pol delta-mediated viral DNA replication. Although the localization of PDIP38 to the mitochondria suggests that it serves functions within the mitochondria, we cannot eliminate the possibility that it may be involved in pol delta-mediated DNA replication or DNA repair under certain conditions such as viral infection.  相似文献   

16.
Shen  Yuan  Iwao  Toyoki  Motomura  Taizo  Nagasato  Chikako 《Protoplasma》2021,258(1):19-32

Based on the morphology of gametes, sexual reproduction in brown algae is usually classified into three types: isogamy, anisogamy, and oogamy. In isogamy, chloroplasts and chloroplast DNA (chlDNA) in the sporophyte cells are inherited biparentally, while mitochondria (or mitochondrial DNA, mtDNA) is inherited maternally. In oogamy, chloroplasts and mitochondria are inherited maternally. However, the patterns of mitochondrial and chloroplast inheritance in anisogamy have not been clarified. Here, we examined derivation of mtDNA and chlDNA in the zygotes through strain-specific PCR analysis using primers based on single nucleotide polymorphism in the anisogamous brown alga Mutimo cylindricus. In 20-day-old sporophytes after fertilization, mtDNA and chlDNA derived from female gametes were detected, thus confirming the maternal inheritance of both organelles. Additionally, the behavior of mitochondria and chloroplasts in the zygotes was analyzed by examining the consecutive serial sections using transmission electron microscopy. Male mitochondria were isolated or compartmentalized by a double-membrane and then completely digested into a multivesicular structure 2 h after fertilization. Meanwhile, male chloroplasts with eyespots were observed even in 4-day-old, seven-celled sporophytes. The final fate of male chloroplasts could not be traced. Organelle DNA copy number was also examined in female and male gametes. The DNA copy number per chloroplast and mitochondria in male gametes was lower compared with female organelles. The degree of difference is bigger in mtDNA. Thus, changes in different morphology and DNA amount indicate that maternal inheritance of mitochondria and chloroplasts in this species may be based on different processes and timing after fertilization.

  相似文献   

17.
Mitochondria are the major intracellular source and target sites of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in animal and human cells. It has been demonstrated that mitochondrial respiratory function declines with age in various human tissues and that a defective respiratory chain results in enhanced production of ROS and free radicals in mitochondria. On the other hand, accumulating evidence now indicates that lipid peroxidation, protein modification and mitochondrial DNA (mtDNA) muutation are concurrently increased during aging. On the basis of these observations and the fact that the rate of cellular production of superoxide anions and hydrogen peroxide increases with age, it has recently been postulated that oxidative stress is a major contributory factor in the aging process. A causal relationship between oxidative modification and mutation of mtDNA, mitochondrial dysfunction and aging has emerged, although some details have remained unsolved. In this article, the role of mitochondria in the human aging process is reviewed on the basis of recent findings gathered from our and other laboratories.  相似文献   

18.
人内源性逆转录病毒(human endogenousretroviruses,HERV)是逆转录病毒在几百万年前感染人类并整合到人类基因组中,以孟德尔方式遗传至今的残余物.其在人体内数量众多,并且每个家族都存在多拷贝.HERV各家族基因结构基本相同,但许多功能都不明确,过去大多数研究人员将内源性逆转录病毒视为垃圾DNA.但随着研究的深入,人们发现HERV与人类的进化关系密切,是哺乳动物生殖所必需的,并且影响哺乳动物胎盘发育,是妊娠所不可或缺的基因.同时和胎盘共同构建了一个防止微生物感染胎儿的屏障.除了以上生理功能外,HERV还参与人体多种自身免疫性疾病和肿瘤的发生和发展过程.  相似文献   

19.
Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair.  相似文献   

20.
Understanding how complex sexual reproduction arose, and why sexual organisms have been more successful than otherwise similar asexual organisms, is a longstanding problem in evolutionary biology. Within this problem, the potential role of endosymbionts or intracellular pathogens in mediating primitive genetic transfers is a continuing theme. In recent years, several remarkable activities of mitochondria have been observed in the germline cells of complex eukaryotes, and it has been found that bacterial endosymbionts related to mitochondria are capable of manipulating diverse aspects of metazoan gametogenesis. An attempt is made here to rationalize these observations with an endosymbiotic model for the evolutionary origins of sex. It is hypothesized that the contemporary life cycle of germline cells has descended from the life cycle of the endosymbiotic ancestor of the mitochondrion. Through an actin-based motility that drove it from one cell to another, the rickettsial ancestor of mitochondria may have functioned as a primitive transducing particle, the evolutionary progenitor of sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号