首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel endogenous beta-1,4-endoglucanase (Ag-EGase III) gene belonging to the glycoside hydrolase family (GHF) 5 was cloned from the mulberry longicorn beetle, Apriona germari. The Ag-EGase III gene spans 1061 bp and consists of a single exon coding for 325 amino acid residues. The Ag-EGase III showed 89% protein sequence identity to another beetle, Psacothea hilaris, cellulase belonging to GHF 5. The Ag-EGase III has the potential proton donor and nucleophile amino acids conserved in GHF 5 and two putative N-glycosylation sites. Northern blot and Western blot analyses showed that Ag-EGases were expressed in the gut; Ag-EGase III and Ag-EGase I were expressed in three gut regions, and no Ag-EGase II was found in hindgut, indicating that the foregut and midgut are the prime sites for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase III was expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase III was approximately 1037 U per mg of recombinant Ag-EGase III. The enzymatic property of the purified recombinant Ag-EGase III showed the highest activity at 55 degrees C and pH 6.0, and was stable at 60 degrees C at least for 10 min. In addition, the N-glycosylation of Ag-EGase III was revealed by treatment with tunicamycin of recombinant virus-infected insect Sf9 cells and with endoglycosidase F of purified recombinant Ag-EGase III, demonstrating that the carbohydrate moieties are not necessary for enzyme activity.  相似文献   

2.
We have previously cloned a cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Ag-EGase I) belonging to glycoside hydrolase family (GHF) 45 from the mulberry longicorn beetle, Apriona germari. We report here the gene structure, expression and enzyme activity of an additional celluase (Ag-EGase II) from A. germari and also described the gene structure of Ag-EGase I. The Ag-EGase II gene spans 1033 bp and consisted of two introns and three exons coding for 239 amino acid residues. The 2713-bp-long genomic DNA of Ag-EGase I also consisted of two introns and three exons. The Ag-EGase II showed 61% protein sequence identity to Ag-EGase I and 51% to another beetle, Phaedon cochleariae, cellulase, belonging to GHF 45. The catalytic sites of GHF 45 are conserved in Ag-EGase II. The Ag-EGase II has 14 conserved cysteine residues and three putative N-glycosylation sites. Northern blot analysis confirmed midgut-specific expression of Ag-EGase II, suggesting that the midgut is the prime site for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase II was expressed as a 36-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase II was approximately 812 U/mg of recombinant Ag-EGase II. The enzymatic properties of the purified recombinant Ag-EGase II showed the highest activity at 50 °C and pH 6.0, and were stable at 60 °C at least for 10 min.  相似文献   

3.
We previously reported that the beta-1,4-endoglucanase (EGase) belonging to glycoside hydrolase family 45 cloned from the mulberry longicorn beetle, Apriona germari (Ag-EGase I), is composed of 237 amino acid residues and has a potential N-glycosylation site at 97-100 amino acid residues (NSTF). We here describe the N-glycosylation and its role for enzymatic activity of the Ag-EGase I. The N-glycosylation of Ag-EGase I was revealed by the treatment of tunicamycin to the recombinant virus-infected insect Sf9 cells and by endoglycosidase F to the purified recombinant Ag-EGase I, demonstrating that the carbohydrate moieties are not necessary for secretion but essential for Ag-EGase I enzyme activity. To further elucidate the functional role of the N-glycosylation in Ag-EGase I, we have assayed the cellulase enzyme activity in Thr99Gln mutant. Lack of N-glycosylation in Ag-EGase I showed no substantial enzyme activity. This result demonstrates that N-glycosylation at site 97-100 amino acid residues (NSTF) is essential for enzyme activity.  相似文献   

4.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   

5.
We previously reported that the beta-1,4-endoglucanase (EGase) belonging to glycoside hydrolase family (GHF) 45 of the mulberry longicorn beetle, Apriona germari (Ag-EGase II), has three potential N-linked glycosylation sites; these sites are located at amino acid residues 56-59 (NKSG), 99-102 (NSTF), and 237-239 (NYSstop). In the present study, we analyze the functional role of these potential N-linked glycosylation sites. Tunicamycin treatment completely abolished the enzymatic activity of Ag-EGase II. To further elucidate the functional role of the N-linked glycosylation sites in Ag-EGase II, we have assayed the cellulase enzyme activity in Ser58Gln, Thr101Gln, or Ser239Gln mutants. Lack of N-linked glycosylation site at residues 99-102 (NSTF), the site of which is conserved in known beetle GHF 45 cellulases, showed loss of enzyme activity and reduced the molecular mass of the enzyme. In contrast, mutations in Ser58Gln or Ser239Gln affected neither the activity nor the apparent molecular mass of the enzyme, indicating that these sites did not lead to N-linked glycosylation. The present study demonstrates that N-linked glycosylation at residues 99-102 (NSTF), while not essential for secretion, is required for Ag-EGase II enzyme activity.  相似文献   

6.
7.
An arylphorin-like hexameric storage protein, AgeHex2, cDNA was cloned from the mulberry longicorn beetle, Apriona germari (Coleoptera, Cerambycidae), larval cDNA library. The complete cDNA sequence of AgeHex2 is comprised of 2,088 bp encoding 696 amino acid residues. The AgeHex2 had four potential N-glycosylation sites. The AgeHex2 contained the highly conserved two larval storage protein signature motifs. The deduced protein sequence of AgeHex2 showed high homology with A. germari hexamerin1 (51% amino acid identity), Tenebrio molitor hexamerin2 (49% amino acid identity), T. molitor early-staged encapsulation inducing protein (43% amino acid identity), and Leptinotarsa decemlineata diapause protein1 (43% amino acid identity). Phylogenetic analysis further confirmed the AgeHex2 is more closely related to coleopteran hexamerins than to the other insect storage proteins. Northern blot analysis confirmed that the AgeHex2 showed fat body-specific expression. The cDNA encoding AgeHex2 was expressed as a 75-kDa protein in the baculovirus-infected insect cells. Furthermore, N-glycosylation of the recombinant AgeHex2 was revealed by tunicamycin to the recombinant virus-infected Sf9 cells, demonstrating that the AgeHex2 is N-glycosylated. Western blot analysis using the polyclonal antiserum against recombinant AgeHex2 indicated that the AgeHex2 corresponds to a 75-kDa storage protein present in the A. germari larval hemolymph.  相似文献   

8.
Li J  Choo YM  Lee KS  Je YH  Woo SD  Kim I  Sohn HD  Jin BR 《Biotechnology letters》2005,27(15):1051-1057
The gene structure, expression and enzyme activity of a serine protease from the firefly, Pyrocoelia rufa (PrSP) were examined. The PrSP gene spans 1474 bp and consists of two introns and three exons coding for 257 amino acid residues. Southern blot analysis of genomic DNA suggested the presence of PrSP gene as a single copy. Western blot analysis and enzyme activity assay exhibited midgut-specific expression, suggesting that the midgut is the prime site where large quantities of PrSP are synthesized for degrading the absorbed protein from the diet. The cDNA encoding PrSP was expressed as a 31 kDa polypeptide in the baculovirus-infected insect Sf9 cells and the recombinant PrSP showed activity in the protease enzyme assay using gelatin as a substrate.  相似文献   

9.
A novel insect β-1,4-endoglucanase (DvvENGaseI) gene belonging to the glycoside hydrolase family (GHF) 45 was identified from the western corn rootworm, Diabrotica virgifera virgifera. The cDNA of the DvvENGaseI consisted of a 720 bp open reading frame encoding a 239 amino-acid protein. Analysis of the amino acid sequence revealed that DvvENGaseI exhibits 60% protein sequence identity when compared with an endoglucanase belonging to GHF45 from another beetle, Leptinotarsa decemlineata. Western blot analyses using a polyclonal antiserum developed from a partial peptide sequence revealed that DvvENGaseI expression coincided with body regions corresponding to the fore-, mid- and hindgut, although regions corresponding to the midgut and hindgut were the primary sites for DvvENGaseI expression. Functional analysis of the DvvENGaseI by RNA interference (RNAi) indicated that nearly complete knock-down of gene expression could be obtained by injection of dsRNA based on qRT-PCR and western blot analysis. However, suppression only resulted in slight developmental delays suggesting that this gene may be part of a larger system of cellulose degrading enzymes.  相似文献   

10.
A digestive β-glucosidase cDNA was cloned from the silkworm, Bombyx mori. The B. mori β-glucosidase cDNA contains an open reading frame of 1473 bp encoding 491 amino acid residues. The B. mori β-glucosidase possesses the amino acid residues involved in catalysis and substrate binding conserved in glycosyl hydrolase family 1. Southern blot analysis of genomic DNA suggested the B. mori β-glucosidase to be a single gene. Northern blot analysis of B. mori β-glucosidase gene confirmed larval midgut-specific expression. The B. mori β-glucosidase mRNA expression in larval midgut was detectable only during feeding period, whereas its expression was downregulated during starvation. The B. mori β-glucosidase cDNA was expressed as a 57-kDa polypeptide in baculovirus-infected insect Sf9 cells, and the recombinant β-glucosidase was active on cellobiose and lactose, but not active on salicin, indicating that the B. mori β-glucosidase possesses the characteristics of the Class 2 enzyme. The enzyme activity of the purified recombinant β-glucosidase expressed in baculovirus-infected insect cells was approximately 665 U per μg of recombinant B. mori β-glucosidase. The purified recombinant B. mori β-glucosidase showed the highest activity at 35 °C and pH 6.0, and were stable at 50 °C at least for 10 min. Treatment of recombinant virus-infected Sf9 cells with tunicamycin, a specific inhibitor of N-glycosylation, revealed that the recombinant B. mori β-glucosidase is N-glycosylated, but the carbohydrate moieties are not essential for enzyme activity.  相似文献   

11.
12.
Park NS  Lee KS  Sohn HD  Kim DH  Lee SM  Park E  Kim I  Je YH  Jin BR 《Mycologia》2005,97(1):130-138
We describe the molecular characterization of the Cu,Zn superoxide dismutase (SOD1) gene of Cordyceps militaris, which is one of the entomopathogenic fungi called a vegetable wasp and plant worm. The SOD1 gene of C. militaris spans 922 bp and consisted of three introns and four exons coding for 154 amino acid residues. The deduced amino acid sequence of the C. militaris SOD1 cDNA showed 88% identity to Claviceps purpurea SOD1, 82% to Neurospora crassa SOD1, and 75-64% to SOD1 sequences from other fungi. The C. militaris SOD1 possesses the typical metal binding ligands of six histidines and one aspartic acid common to fungal SOD1s. The cDNA encoding C. militaris SOD1 was expressed as a 17-kDa polypeptide in the baculovirus-infected insect Sf9 cells. The enzyme activity of the purified recombinant C. militaris SOD1 was approximately 568 U per mg(-1) . Southern blot analysis of the genomic DNA suggested the C. militaris SOD1 was a single gene. Northern and Western blot analysis and enzyme activity assays indicated SOD1 was expressed constitutively. This is the first report of an SOD1 gene from any entomopathogenic fungus.  相似文献   

13.
A fat body-specific chitinase cDNA was cloned from the spider, Araneus ventricosus. The cDNA encoding A. ventricosus chitinase (AvChit1) is 1515 bp long with an open reading frame (ORF) of 431 amino acid residues. AvChit1 possesses the chitinase family 18 active site signature and one N-glycosylation site. The deduced amino acid sequence of AvChit1 cDNA showed 43% identity to both Glossina morsitans morsitans chitinase and a human chitotriosidase, and 30-40% to some insect chitinases which lack both the serine/threonine and chitin binding domains. Southern blot analysis of genomic DNA suggested the presence of AvChit1 gene as a single copy. Northern and Western blot analysis and enzyme activity assay showed the tissue-specific expression of AvChit1 in the A. ventricosus fat body. The AvChit1 cDNA was expressed as a 61 kDa polypeptide in baculovirus-infected insect Sf9 cells and the recombinant AvChit1 showed activity in the chitinase enzyme assay using 0.1% glycol chitin as a substrate. Treatment of recombinant virus-infected Sf9 cells with tunicamycin, a specific inhibitor of N-glycosylation, revealed that AvChit1 is N-glycosylated, but the carbohydrate moieties are not essential for chitinolytic activity.  相似文献   

14.
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7‐3, GHF7‐5, and GHF7‐6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full‐length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus‐insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7‐3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β‐glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell‐1), beta‐glucosidase (β‐glu), and laccase (LacA). GHF7‐3 was the only GHF7 to enhance glucose release by Cell‐1 and β‐glu. Finally, GHF7‐3, Cell‐1, and β‐glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β‐glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7‐3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.  相似文献   

15.
16.
17.
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356 bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5 kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.  相似文献   

18.
A novel endogenous β-1,4-endoglucanase (EG) gene belonging to the glycosyl hydrolase family 9 (GHF 9) that is distributed throughout the digestive tract of the cricket Teleogryllus emma was cloned and characterized. This gene, named TeEG-I, consists of eight exons encoding 453 amino acid residues and exists as a single copy in the T. emma genome. TeEG-I possesses all the features, including signature motifs and catalytic domains, of GHF 9 members, sharing high levels of identity with the termite, Mastotermes darwiniensis (64% protein sequence identity), and the cockroach, Panesthia cribrata (62%), GHF 9 cellulases. Recombinant TeEG-I, which is expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells, showed an optimal pH and temperature of pH 5.0 and 40 °C. The Km and Vmax values for digestion of carboxymethyl cellulose were 5.4 mg/ml and 3118.4 U/mg, respectively. Northern and Western blot analyses revealed that TeEG-I is present throughout the digestive tract, which correlated with the TeEG-I distribution and cellulase activity in the digestive tract as assayed by immunofluorescence staining and enzyme activity assay, respectively. These results indicate that TeEG-I is distributed throughout the entire digestive tract of T. emma, suggesting a functional role of endogenous TeEG-I in a sequential cellulose digestion process throughout the T. emma digestion tract.  相似文献   

19.
大鼠20α羟类固醇脱氢酶(20α-Hydroxysteroiddehydrogenase,20αHSD)cDNA片段,被插入杆状病毒(BacuIovirus)的转移载体pBlueBacⅢ,经野生型病毒DNA的共转染,从被转染的昆虫细胞中获得重组病毒。Northernblot分析,重组病毒感染细胞有20αHSD基因表达。感染细胞裂解液的Western印迹法分析,37kD的蛋白带被20αHSD抗体识别.体外酶活性测定发现,感染细胞裂解液中含有20αHSD酶促活性以上结果提示,大鼠20αHSD在杆状病毒昆虫表达系统成功地获得表达,为今后大量制备和纯化20αHSD创造条件。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号